scholarly journals A New Arithmetically Incomplete First-Order Extension of Gl All Theorems of Which Have Cut Free Proofs

2016 ◽  
Vol 45 (1) ◽  
Author(s):  
George Tourlakis

Reference [12] introduced a novel formula to formula translation tool (“formula-tors”) that enables syntactic metatheoretical investigations of first-order modallogics, bypassing a need to convert them first into Gentzen style logics in order torely on cut elimination and the subformula property. In fact, the formulator tool,as was already demonstrated in loc. cit., is applicable even to the metatheoreticalstudy of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema ☐A → ☐∀ A of the logics M3and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations.  In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complexproofs in [2,8]).

2019 ◽  
Vol 27 (4) ◽  
pp. 478-506
Author(s):  
Sara Negri ◽  
Eugenio Orlandelli

Abstract This paper provides a proof-theoretic study of quantified non-normal modal logics (NNML). It introduces labelled sequent calculi based on neighbourhood semantics for the first-order extension, with both varying and constant domains, of monotone NNML, and studies the role of the Barcan formulas in these calculi. It will be shown that the calculi introduced have good structural properties: invertibility of the rules, height-preserving admissibility of weakening and contraction and syntactic cut elimination. It will also be shown that each of the calculi introduced is sound and complete with respect to the appropriate class of neighbourhood frames. In particular, the completeness proof constructs a formal derivation for derivable sequents and a countermodel for non-derivable ones, and gives a semantic proof of the admissibility of cut.


2018 ◽  
Vol 11 (2) ◽  
pp. 371-410 ◽  
Author(s):  
MARTA BÍLKOVÁ ◽  
GIUSEPPE GRECO ◽  
ALESSANDRA PALMIGIANO ◽  
APOSTOLOS TZIMOULIS ◽  
NACHOEM WIJNBERG

AbstractWe introduce the logic LRC, designed to describe and reason about agents’ abilities and capabilities in using resources. The proposed framework bridges two—up to now—mutually independent strands of literature: the one on logics of abilities and capabilities, developed within the theory of agency, and the one on logics of resources, motivated by program semantics. The logic LRC is suitable to describe and reason about key aspects of social behaviour in organizations. We prove a number of properties enjoyed by LRC (soundness, completeness, canonicity, and disjunction property) and its associated analytic calculus (conservativity, cut elimination, and subformula property). These results lay at the intersection of the algebraic theory of unified correspondence and the theory of multitype calculi in structural proof theory. Case studies are discussed which showcase several ways in which this framework can be extended and enriched while retaining its basic properties, so as to model an array of issues, both practically and theoretically relevant, spanning from planning problems to the logical foundations of the theory of organizations.


2019 ◽  
Vol 29 (8) ◽  
pp. 1275-1308 ◽  
Author(s):  
Ross Horne ◽  
Alwen Tiu

AbstractThis paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.


Author(s):  
Francesco Belardinelli ◽  
Andreas Herzig

We introduce a first-order extension of dynamic logic (FO-DL), suitable to represent and reason about the behaviour of Data-aware Systems (DaS), which are systems whose data content is explicitly exhibited in the system’s description. We illustrate the expressivity of the formal framework by modelling English auctions as DaS, and by specifying relevant properties in FO-DL. Most importantly, we develop an abstraction-based verification procedure, thus proving that the model checking problem for DaS against FO-DL is actually decidable, provided some mild assumptions on the interpretationdomain.


2021 ◽  
pp. 268-311
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

This chapter opens the part of the book that deals with ordinal proof theory. Here the systems of interest are not purely logical ones, but rather formalized versions of mathematical theories, and in particular the first-order version of classical arithmetic built on top of the sequent calculus. Classical arithmetic goes beyond pure logic in that it contains a number of specific axioms for, among other symbols, 0 and the successor function. In particular, it contains the rule of induction, which is the essential rule characterizing the natural numbers. Proving a cut-elimination theorem for this system is hopeless, but something analogous to the cut-elimination theorem can be obtained. Indeed, one can show that every proof of a sequent containing only atomic formulas can be transformed into a proof that only applies the cut rule to atomic formulas. Such proofs, which do not make use of the induction rule and which only concern sequents consisting of atomic formulas, are called simple. It is shown that simple proofs cannot be proofs of the empty sequent, i.e., of a contradiction. The process of transforming the original proof into a simple proof is quite involved and requires the successive elimination, among other things, of “complex” cuts and applications of the rules of induction. The chapter describes in some detail how this transformation works, working through a number of illustrative examples. However, the transformation on its own does not guarantee that the process will eventually terminate in a simple proof.


2019 ◽  
Vol 27 (4) ◽  
pp. 596-623
Author(s):  
Zhe Lin ◽  
Minghui Ma

Abstract Intuitionistic modal logics are extensions of intuitionistic propositional logic with modal axioms. We treat with two modal languages ${\mathscr{L}}_\Diamond $ and $\mathscr{L}_{\Diamond ,\Box }$ which extend the intuitionistic propositional language with $\Diamond $ and $\Diamond ,\Box $, respectively. Gentzen sequent calculi are established for several intuitionistic modal logics. In particular, we introduce a Gentzen sequent calculus for the well-known intuitionistic modal logic $\textsf{MIPC}$. These sequent calculi admit cut elimination and subformula property. They are decidable.


1986 ◽  
Vol 51 (3) ◽  
pp. 748-754 ◽  
Author(s):  
Andre Scedrov

Myhill [12] extended the ideas of Shapiro [15], and proposed a system of epistemic set theory IST (based on modal S4 logic) in which the meaning of the necessity operator is taken to be the intuitive provability, as formalized in the system itself. In this setting one works in classical logic, and yet it is possible to make distinctions usually associated with intuitionism, e.g. a constructive existential quantifier can be expressed as (∃x) □ …. This was first confirmed when Goodman [7] proved that Shapiro's epistemic first order arithmetic is conservative over intuitionistic first order arithmetic via an extension of Gödel's modal interpretation [6] of intuitionistic logic.Myhill showed that whenever a sentence □A ∨ □B is provable in IST, then A is provable in IST or B is provable in IST (the disjunction property), and that whenever a sentence ∃x.□A(x) is provable in IST, then so is A(t) for some closed term t (the existence property). He adapted the Friedman slash [4] to epistemic systems.Goodman [8] used Epistemic Replacement to formulate a ZF-like strengthening of IST, and proved that it was a conservative extension of ZF and that it had the disjunction and existence properties. It was then shown in [13] that a slight extension of Goodman's system with the Epistemic Foundation (ZFER, cf. §1) suffices to interpret intuitionistic ZF set theory with Replacement (ZFIR, [10]). This is obtained by extending Gödel's modal interpretation [6] of intuitionistic logic. ZFER still had the properties of Goodman's system mentioned above.


2011 ◽  
Vol 76 (2) ◽  
pp. 673-699 ◽  
Author(s):  
Michael Gabbay

AbstractWe build on an existing a term-sequent logic for the λ-calculus. We formulate a general sequent system that fully integrates αβη-reductions between untyped λ-terms into first order logic.We prove a cut-elimination result and then offer an application of cut-elimination by giving a notion of uniform proof for λ-terms. We suggest how this allows us to view the calculus of untyped αβ-reductions as a logic programming language (as well as a functional programming language, as it is traditionally seen).


1985 ◽  
Vol 50 (2) ◽  
pp. 289-301
Author(s):  
John Mayberry

My aim here is to investigate the role of global quantifiers—quantifiers ranging over the entire universe of sets—in the formalization of Zermelo-Fraenkel set theory. The use of such quantifiers in the formulas substituted into axiom schemata introduces, at least prima facie, a strong element of impredicativity into the thapry. The axiom schema of replacement provides an example of this. For each instance of that schema enlarges the very domain over which its own global quantifiers vary. The fundamental question at issue is this: How does the employment of these global quantifiers, and the choice of logical principles governing their use, affect the strengths of the axiom schemata in which they occur?I shall attack this question by comparing three quite different formalizations of the intuitive principles which constitute the Zermelo-Fraenkel system. The first of these, local Zermelo-Fraenkel set theory (LZF), is formalized without using global quantifiers. The second, global Zermelo-Fraenkel set theory (GZF), is the extension of the local theory obtained by introducing global quantifiers subject to intuitionistic logical laws, and taking the axiom schema of strong collection (Schema XII, §2) as an additional assumption of the theory. The third system is the conventional formalization of Zermelo-Fraenkel as a classical, first order theory. The local theory, LZF, is already very strong, indeed strong enough to formalize any naturally occurring mathematical argument. I have argued (in [3]) that it is the natural formalization of naive set theory. My intention, therefore, is to use it as a standard against which to measure the strength of each of the other two systems.


Sign in / Sign up

Export Citation Format

Share Document