Effect of Simulated Waterlogging Condition Imposed at Early Vegetative Growth on Final Yield in Greengram (Vigna radiata)

Author(s):  
Bhaskar Saikia ◽  
Prakash Kalita ◽  
Ranjan Das

Background: ‘Rain’ plays a very important role since most of the agricultural productivity is rainfall dependent. However at the same time unpredictable and untimely rainfall are also responsible for crop loss. In India, our North-eastern region receives the highest amount of rainfall. Even in pre-monsoon season, our region receives very high amount of rainfall which hampers the crop production, especially the summer season greengram. Hence, an effort had been made to screen some genotypes of summer greengram, tolerant to waterlogging condition. A study was carried out during the summer season to evaluate the physiological performance of some greengram genotypes as influenced by waterlogging condition of varying duration imposed at early vegetative stage of growth.Methods: From an initial screening of forty genotypes in laboratory condition, five genotypes were selected based on germination percentage, seedling length and vigour index. These five genotypes were further evaluated in a pot experiment with four treatment combinations comprising of control (T1), waterlogging for 4 days (T2), waterlogging for 8 days (T3) and waterlogging for 12 days (T4). Waterlogging conditions were created in the pots at the time of sowing. Result: Water logging caused adverse effect on growth and development of all the genotypes, with the longest waterlogging showing severe deleterious effect. The parameters viz. germination percentage, leaf chlorophyll content, leaf area, plant height, nitrate reductase activity, number of seeds pod-1, pods plant-1, root length, number of root nodules plant-1 and harvest index were found to decline under waterlogged condition whereas, lipid peroxidase and superoxide dismutase activity showed higher values under waterlogged condition. The performance of the genotype Sadiya Local was found to be the best from the point of view of tolerance as indicated by higher seed yield followed by AKM 12-28. The better performance of this genotype appeared to be related to the higher values for some traits viz. germination percentage, leaf chlorophyll, nitrate reductase activity, superoxide dismutase activity, number of pods plant-1 and harvest index. 

2021 ◽  
Author(s):  
Juby BABY ◽  
Minimol Janakyseifudeen ◽  
Suma Basura ◽  
Santhoshkumar Adiyodi Venugopal ◽  
Jiji Joseph ◽  
...  

Abstract Background:Cocoa, being a shade loving crop cannot withstand long periods of water stress. Breeding for drought tolerance is the need of the hour due to change in climatic condition and extension of crop to non traditional area. Hybrids were produced by crossing four tolerant genotypes in all possible combination. The cross GVI 55 x M 13.12 didn’t yield any fruit due to cross incompatibility between these genotypes. Various biochemical parameters act as the true indicators to select tolerant and susceptible types. The major biochemical parameters considered after imposing stress included proline, nitrate reductase activity, superoxide dismutase content and glycine betaine. Results: The drought tolerant hybrids were having high amount of proline, superoxide dismutase enzyme and glycine betaine content. Normally, plants having drought stress shows low amount of nitrate reductase activity. However, in case of hybrids, the drought tolerant hybrids were having higher NR activity than the susceptible hybrids. The highest amount of NR was found in the control plants kept at fully irrigated conditions.Conclusions: This experiment showed the role of different biochemical enzymes and osmolytes in giving tolerance to plants during drought stress. Logistic regression analysis selected proline and nitrate reductase as the two biochemical markers for identifying efficient drought tolerant genotypes in the future breeding programmes.


Author(s):  
Jagdish Kumar Nagda ◽  
Nishant A. Bhanu ◽  
Nishant A. Bhanu ◽  
Deepmala Katiyar ◽  
Akhouri Hemantaranjan ◽  
...  

The present investigation was carried out to examine the role of exogenously applied ascorbic acid which mitigates the deleterious effects of salt stress in mungbean (Vigna radiata L.) genotype HUM-1. Plants grown under induced salinity stress at 150 mM NaCl were treated with different concentration of ascorbic acid, i.e., 0.5 mM, 1.0 mM and 2.0 mM. To study the effects of treatments of salt stress on chlorophyll content, proline content, nitrate reductase activity, superoxide dismutase activity and yield attributes data were recorded at 20, 40, 60 day after sowing. Nitrate reductase activity and chlorophyll content with 1.0 mM ascorbic acid under salinity (150 mM NaCl) while the activities of superoxide dismutase get reduced up to 43.71% at 40 days after sowing. In plant treated with combined treatment of 150 mM NaCl and 1.0 mM foliar applied ascorbic acid caused a decline in the level of proline, which was 3.38 mg, 3.35 mg and 6.30 mg at 20, 40 and 60 days after sowing. The threshold level of ascorbic acid was 150 mM NaCl along with 1.0 mM ascorbic acid, that improved the yield attributes under salinity. Ascorbic acid inhibits the adverse effect of NaCl for growth and development of plants. So ascorbic acid may be a promising treatment to ameliorate the deleterious effects of salt stress in crops.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baby Juby ◽  
Janaki Seifudeen Minimol ◽  
Basura Suma ◽  
Adiyodi Venugopal Santhoshkumar ◽  
Joseph Jiji ◽  
...  

Abstract Background Cocoa, being a shade loving crop cannot withstand long periods of water stress. Breeding for drought tolerance is the need of the hour due to change in climatic condition and extension of crop to non-traditional areas. Hybrids were produced by crossing four tolerant genotypes in all possible combination. The cross GV1 55 x M 13.12 didn’t yield any fruit due to cross incompatibility between these genotypes. Various biochemical parameters act as the true indicators to select tolerant and susceptible types. The major biochemical parameters considered after imposing stress included proline, nitrate reductase activity, superoxide dismutase content and glycine betaine. Results The drought tolerant hybrids were having high amount of proline, superoxide dismutase enzyme and glycine betaine content. Normally, plants having drought stress show low amount of nitrate reductase activity. However, in case of hybrids, the drought tolerant hybrids were having higher NR activity than the susceptible hybrids. The highest amount of NR was found in the control plants kept at fully irrigated conditions. Conclusions This experiment showed the role of different biochemical enzymes and osmolytes in giving tolerance to plants during drought stress. Logistic regression analysis selected proline and nitrate reductase as the two biochemical markers for identifying efficient drought tolerant genotypes in the future breeding programmes.


Crop Science ◽  
1966 ◽  
Vol 6 (2) ◽  
pp. 169-173 ◽  
Author(s):  
L. E. Schrader ◽  
D. M. Peterson ◽  
E. R. Leng ◽  
R. H. Hageman

Crop Science ◽  
1982 ◽  
Vol 22 (1) ◽  
pp. 85-88 ◽  
Author(s):  
E. L. Deckard ◽  
N. D. Williams ◽  
J. J. Hammond ◽  
L. R. Joppa

Sign in / Sign up

Export Citation Format

Share Document