scholarly journals Ankle Sprain Affects Lower Leg Muscle Activation on Vertical Landing, Half Point, and Gait in Female Ballet Students

2019 ◽  
Vol 31 (2) ◽  
pp. 129-133 ◽  
Author(s):  
Heejaeng Kim
2014 ◽  
Vol 39 ◽  
pp. S97-S98
Author(s):  
Corina Nüesch ◽  
Cora Huber ◽  
Geert Pagenstert ◽  
Victor Valderrabano

2012 ◽  
Vol 47 (5) ◽  
pp. 525-536 ◽  
Author(s):  
Darin A. Padua ◽  
David R. Bell ◽  
Micheal A. Clark

Context Knee-valgus motion is a potential risk factor for certain lower extremity injuries, including anterior cruciate ligament injury and patellofemoral pain. Identifying neuromuscular characteristics associated with knee-valgus motion, such as hip and lower leg muscle activation, may improve our ability to prevent lower extremity injuries. Objective We hypothesized that hip and lower leg muscle-activation amplitude would differ among individuals displaying knee valgus (medial knee displacement) during a double-legged squat compared with those who did not display knee valgus. We further suggested that the use of a heel lift would alter lower leg muscle activation and frontal-plane knee motion in those demonstrating medial knee displacement. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 37 healthy participants were assigned to the control (n = 19) or medial-knee-displacement (n = 18) group based on their double-legged squat performance. Main Outcome Measure(s) Muscle-activation amplitude for the gluteus maximus, gluteus medius, adductor magnus, medial and lateral gastrocnemius, and tibialis anterior was measured during 2 double-legged squat tasks. The first task consisted of performing a double-legged squat without a heel lift; the second consisted of performing a double-legged squat task with a 2-in (5.08-cm) lift under the heels. Results Muscle-activation amplitude for the hip adductor, gastrocnemius, and tibialis anterior was greater in those who displayed knee valgus than in those who did not (P < .05). Also, use of heel lifts resulted in decreased activation of the gluteus maximus, hip adductor, gastrocnemius, and tibialis anterior muscles (P < .05). Use of heel lifts also eliminated medially directed frontal-plane knee motion in those displaying medial knee displacement. Conclusions Medial knee displacement during squatting tasks appears to be associated with increased hip-adductor activation and increased coactivation of the gastrocnemius and tibialis anterior muscles.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Joshua Mattock ◽  
Julie R. Steele ◽  
Karen J. Mickle

Abstract Background Medial tibial stress syndrome (MTSS) is a common lower leg injury experienced by runners. Although numerous risk factors are reported in the literature, many are non-modifiable and management of the injury remains difficult. Lower leg muscle structure and function are modifiable characteristics that influence tibial loading during foot-ground contact. Therefore, this study aimed to determine whether long-distance runners with MTSS displayed differences in in vivo lower leg muscle structure and function than matched asymptomatic runners. Methods Lower leg structure was assessed using ultrasound and a measure of lower leg circumference to quantify muscle cross-sectional area, thickness and lean lower leg girth. Lower leg function was assessed using a hand-held dynamometer to quantify maximal voluntary isometric contraction strength and a single leg heel raise protocol was used to measure ankle plantar flexor endurance. Outcome variables were compared between the limbs of long-distance runners suffering MTSS (n = 20) and matched asymptomatic controls (n = 20). Means, standard deviations, 95 % confidence intervals, mean differences and Cohen’s d values were calculated for each variable for the MTSS symptomatic and control limbs. Results MTSS symptomatic limbs displayed a significantly smaller flexor hallucis longus cross-sectional area, a smaller soleus thickness but a larger lateral gastrocnemius thickness than the control limbs. However, there was no statistical difference in lean lower leg girth. Compared to the matched control limbs, MTSS symptomatic limbs displayed deficits in maximal voluntary isometric contraction strength of the flexor hallucis longus, soleus, tibialis anterior and peroneal muscles, and reduced ankle plantar flexor endurance capacity. Conclusions Differences in lower leg muscle structure and function likely render MTSS symptomatic individuals less able to withstand the negative tibial bending moment generated during midstance, potentially contributing to the development of MTSS. The clinical implications of these findings suggest that rehabilitation protocols for MTSS symptomatic individuals should aim to improve strength of the flexor hallucis longus, soleus, tibialis anterior and peroneal muscles along with ankle plantar flexor endurance. However, the cross-sectional study design prevents us determining whether between group differences were a cause or effect of MTSS. Therefore, future prospective studies are required to substantiate the study findings.


Sign in / Sign up

Export Citation Format

Share Document