scholarly journals Effect of Training Types Using Recumbent Cycle Ergometer on Ankle Strength in Healthy Male Subjects

2021 ◽  
Vol 33 (6) ◽  
pp. 292-296
Author(s):  
Ho-Youl Ryu ◽  
In-Cheol Jeon ◽  
Ki-Song Kim
2012 ◽  
Vol 24 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Michael P. Rogowski ◽  
Justin P. Guilkey ◽  
Brooke R. Stephens ◽  
Andrew S. Cole ◽  
Anthony D. Mahon

This study examined the influence of maturation on the oxygen uptake efficiency slope (OUES) in healthy male subjects. Seventy-six healthy male subjects (8–27 yr) were divided into groups based on maturation status: prepubertal (PP), midpubertal (MP), late-pubertal (LP), and young-adult (YA) males. Puberty status was determined by physical examination. Subjects performed a graded exercise test on a cycle ergometer to determine OUES. Group differences were assessed using a one-way ANOVA. OUES values (VO2L·min1/log10VEL·min−1) were lower in PP and MP compared with LP and YA (p < .05). When OUES was expressed relative to body mass (VO2mL·kg−1·min−1/log10VEmL·kg−1·min−1) differences between groups reversed whereby PP and MP had higher mass relative OUES values compared with LP and YA (p < .05). Adjusting OUES by measures of body mass failed to eliminate differences across maturational groups. This suggests that qualitative factors, perhaps related to oxidative metabolism, account for the responses observed in this study.


1994 ◽  
Vol 76 (6) ◽  
pp. 2541-2545 ◽  
Author(s):  
F. Yamazaki ◽  
R. Sone ◽  
H. Ikegami

This study determined the phase response and amplitude response (delta) of esophageal temperature (T(es)), mean skin temperature (Tsk), and forearm sweating rate (Msw) to sinusoidal work. Six healthy male subjects exercised on a cycle ergometer with a constant load (approximately 35% maximal O2 uptake) for a 30-min period; for the next 40 min they exercised with a sinusoidal load at 25 degrees C at 35% relative humidity. The sinusoidal load varied between approximately 10 and 60% maximal O2 uptake, and three different time periods (1.3, 4, and 8 min) were selected. Each subject performed three experiments that differed only in the timing of sinusoidal work. During the 4- and 8-min periods, T(es), Tsk, and Msw changed almost sinusoidally. The phase of Msw change significantly preceded those of T(es) and Tsk changes (P < 0.05). During the 1.3-min period, the level of T(es) and Tsk remained almost constant (delta T(es) 0.01 +/- 0.00 degrees C, delta Tsk 0.03 +/- 0.01 degrees C), whereas Msw showed a clear sinusoidal pattern. We conclude that the sweating response during sinusoidal work depends on both thermal and nonthermal factors, the latter being emotional, mental, or sensory stimulation. The contribution of the nonthermal factors to the general sweating response during exercise can be separated from that of the thermal factors by using sinusoidal work during a short period (e.g., 1.3 min).


1993 ◽  
Vol 75 (3) ◽  
pp. 1419-1422 ◽  
Author(s):  
F. Peronnet ◽  
E. Adopo ◽  
D. Massicotte ◽  
G. R. Brisson ◽  
C. Hillaire-Marcel

This study presents a method for computing the respective amounts of two simultaneously ingested exogenous substrates (A and B) that are oxidized during a period of prolonged exercise by use of 13C labeling. This method is based on the observation that the total volume of 13CO2 produced (V13CO2tot) is the sum of 1) V13CO2 arising from the oxidation of endogenous substrates (V13CO2endo), 2) V13CO2 arising from the oxidation of substrate A (V13CO2A), and 3) V13CO2 arising from the oxidation of substrate B (V13CO2B). The equation, V13CO2tot = V13CO2endo+V13CO2A+V13CO2B, with three unknowns, can be solved from the results of three experiments conducted under the same conditions but with at least two values for the isotopic composition of A and B. This method has been used on five healthy male subjects to compute the amounts of glucose and fructose oxidized when a mixture of 15 g of glucose and 15 g of fructose is ingested (in 300 ml of water) over 60 min of cycle ergometer exercise at 65% of maximal O2 uptake. Results from three experiments indicated that 9.8 +/- 3.1 and 5.7 +/- 2.1 g of glucose and fructose, respectively, were oxidized. The total amount of exogenous carbohydrates oxidized (15.5 +/- 4.3 g) is in agreement with the oxidation rates of exogenous glucose computed in similar conditions when 30 g of glucose were ingested (13 g; Peronnet et al. Med. Sci. Sports Exercise 25: 297–302, 1993). The difference between the oxidation rates of exogenous glucose and fructose is also in line with data from the literature.


2004 ◽  
Vol 171 (4S) ◽  
pp. 234-234 ◽  
Author(s):  
Harin Padma-Nathan ◽  
Jae Seung Pacik ◽  
Byoung Ok Ahn ◽  
Kyung Koo Kang ◽  
Mi Young Bahng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document