scholarly journals Radiation, Heat Generation and Viscous Dissipation Effects on MHD Boundary Layer Flow for the Blasius and Sakiadis Flows with a Convective Surface Boundary Condition

2015 ◽  
Vol 8 (3) ◽  
pp. 559-570 ◽  
Author(s):  
K. Gangadhar ◽  
N. Bhaskar Reddy ◽  
S. Suneetha ◽  
◽  
◽  
...  
Author(s):  
WUBSHET IBRAHIM ◽  
BANDARI SHANKER

A numerical analysis has been carried out to investigate the problem of magnetohydrodynamic (MHD) boundary-layer flow and heat transfer of a viscous incompressible fluid over a fixed plate. Convective surface boundary condition is taken into account for thermal boundary condition. A problem formulation is developed in the presence of thermal radiation, magnetic field and heat source/sink parameters. A similarity transformation is used to reduce the governing boundary-layer equations to couple higher-order nonlinear ordinary differential equations. These equations are numerically solved using Keller–Box method. The effect of the governing parameters such as radiation, Prandtl number, Hartman number, heat source/sink parameter on velocity and temperature profile is discussed and shown by plotting graphs. It is found that the temperature is an increasing function of convective parameter A, radiation and heat source parameters. Besides, the numerical results for the local skin friction coefficient and local Nusselt number are computed and presented in tabular form. Finally a comparison with a previously published results on a special case of the problem has done and shows excellent agreement.


2015 ◽  
Vol 11 (4) ◽  
pp. 5094-5107
Author(s):  
Hadibandhu Pattnayak ◽  
Rojali Mohapatra

Magnetohydrodynamics (MHD) boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction has been analyzed in the present study. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity  in a nanofluid and with a parallel free stream velocity and surface temperature and concentration. The governing nonlinear boundary layer equations for momentum, thermal energy and concentration are transformed to a system of nonlinear ordinary coupled differential equations by using suitable similarity transformation with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, buoyancy parameter, radiation conduction parameter, heat generation parameter, Porosity parameter, Dufour number, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with RungeKutta six order iteration schemes.


Sign in / Sign up

Export Citation Format

Share Document