32.3: Liquid Crystal Panel for High Efficiency Autostereoscopic 3D Displays

2008 ◽  
Vol 39 (1) ◽  
pp. 452 ◽  
Author(s):  
Shang-Chih Chuang ◽  
Cheng-Huan Chen ◽  
Wallen Mphepö ◽  
Chi-Lin Wu ◽  
Yi-Pai Huang ◽  
...  
2009 ◽  
Vol 48 (18) ◽  
pp. 3446 ◽  
Author(s):  
Cheng-Huan Chen ◽  
Yi-Pai Huang ◽  
Shang-Chih Chuang ◽  
Chi-Lin Wu ◽  
Han-Ping D. Shieh ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Tao Zhan ◽  
En-Lin Hsiang ◽  
Kun Li ◽  
Shin-Tson Wu

We demonstrate a light efficient virtual reality (VR) near-eye display (NED) design based on a directional display panel and a diffractive deflection film (DDF). The DDF was essentially a high-efficiency Pancharatnam-Berry phase optical element made of liquid crystal polymer. The essence of this design is directing most of the display light into the eyebox. The proposed method is applicable for both catadioptric and dioptric VR lenses. A proof-of-concept experiment was conducted with off-the-shelf optical parts, where the light efficiency was enhanced by more than 2 times.


2021 ◽  
Vol 2021 (2) ◽  
pp. 100-1-100-6
Author(s):  
Andrew J. Woods

Millions of Stereoscopic 3D capable TVs were sold into the consumer market from 2007 through to 2016. A wide range of display technologies were supported including rear-projection DLP, Plasma, LCD and OLED. Some displays supported the Active 3D method using liquid-crystal shutter glasses, and some displays supported the Passive 3D method using circularly polarised 3D glasses. Displays supporting Full-HD and Ultra-HD (4K) resolution were available in sizes ranging from 32" to 86" diagonal. Unfortunately display manufacturers eventually changed their focus to promoting other display technologies and 2016 was the last year that new 3D TVs were made for the consumer market. Fortunately, there are still millions of 3D displays available through the secondhand- market, however it can be difficult to know which displays have 3D display support. This paper will provide a listing of specifically Passive 3D TVs manufactured by LG, however it has been our experience that the 3D quality varied considerably from one display to another hence it is necessary to qualify the quality of the 3D available on these displays using a testing technique that will be described in the paper.


2020 ◽  
Vol 20 (4) ◽  
pp. 6-26
Author(s):  
V. A. Burmistrov ◽  
V. V. Aleksandriiskii ◽  
I. V. Novikov ◽  
O. I. Koifman

Induction of helical mesophases by incorporating chiral dopants into the nematics matrix is the promising modern trends in the chemistry of liquid crystals. This process is associated with a unique phenomenon - an amplification of chirality in liquid-crystalline phases, which ensures the detection of enantiomers by their chiral induction, much more sensitive than other methods. The relevance of this approach is due to the need to create perspective electro-optical devices operating with ultra-low control voltages based on twist effects, chromatographic stationary phases with high chiral selectivity, flexible magnets, photo-sensitive nanostructures, and other smart LC materials. The successful solution of these problems is impossible without experimental research and theoretical comprehension of the mechanisms of third level chiral transfer optically active dopant – nematic liquid crystal. In the last decade, a large number of works have appeared on the solution of these problems. This review is devoted to a generalization of the experimental results and a theoretical description of the transfer of molecular chirality to orientationally ordered systems with the participation of both chiral molecular substituents with an asymmetric carbon atom and planar or quasi-planar fragments chirally distorted relative to each other. The stereochemical aspects of induction associated with the structural correspondences of the dopant and nematic liquid crystal, as well as the main classes of optically active additives, are discussed. Application of metal complexes, both Werner and macroheterocyclic, are presented. Special attention is paid to the results of the mechanisms study of chiral transfer due to various intermolecular interactions: hydrogen bonding, axial coordination, and the formation of inclusion compounds. The high efficiency of induction of spiral mesophases has been demonstrated with a combination of different self-assembly mechanisms in liquid crystal - chiral additive systems.


2020 ◽  
Vol 40 (17) ◽  
pp. 1704002
Author(s):  
肖芮文 Xiao Ruiwen ◽  
肖俊羽 Xiao Junyu ◽  
金萍 Jin Ping ◽  
张荣轩 Zhang Rongxuan ◽  
王磊 Wang Lei

2014 ◽  
Vol 41 (2) ◽  
pp. 0202002
Author(s):  
师宇斌 Shi Yubin ◽  
马浩统 Ma Haotong ◽  
马阎星 Ma Yanxing ◽  
吕洋 Lü Yang ◽  
司磊 Si Lei

2013 ◽  
Vol 38 (24) ◽  
pp. 5264 ◽  
Author(s):  
Gary Brooker ◽  
Nisan Siegel ◽  
Joseph Rosen ◽  
Nobuyuki Hashimoto ◽  
Makoto Kurihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document