scholarly journals Bernstein Collocation Method for Solving the First Order Nonlinear Differential Equations with the Mixed Non-Linear Conditions

2015 ◽  
Vol 20 (3) ◽  
pp. 160-173 ◽  
Author(s):  
S. Yalçınbaş ◽  
H. Gürler
2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 557-565 ◽  
Author(s):  
Fakhrodin Mohammadi ◽  
Mohammad Rashidi

An efficient Spectral Collocation method based on the shifted Legendre polynomials was applied to get solution of heat transfer of a micropolar fluid through a porous medium with radiation. A similarity transformation is applied to convert the governing equations to a system of non-linear ordinary differential equations. Then, the shifted Legendre polynomials and their operational matrix of derivative are used for producing an approximate solution for this system of non-linear differential equations. The main advantage of the proposed method is that the need for guessing and correcting the initial values during the solution procedure is eliminated and a stable solution with good accuracy can be obtained by using the given boundary conditions in the problem. A very good agreement is observed between the obtained results by the proposed Spectral Collocation method and those of previously published ones.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1819
Author(s):  
Radu Constantinescu ◽  
Aurelia Florian

This paper considers issues such as integrability and how to get specific classes of solutions for nonlinear differential equations. The nonlinear Kundu–Mukherjee–Naskar (KMN) equation is chosen as a model, and its traveling wave solutions are investigated by using a direct solving method. It is a quite recent proposed approach called the functional expansion and it is based on the use of auxiliary equations. The main objectives are to provide arguments that the functional expansion offers more general solutions, and to point out how these solutions depend on the choice of the auxiliary equation. To see that, two different equations are considered, one first order and one second order differential equations. A large variety of KMN solutions are generated, part of them listed for the first time. Comments and remarks on the dependence of these solutions on the solving method and on form of the auxiliary equation, are included.


Sign in / Sign up

Export Citation Format

Share Document