scholarly journals Monte carlo simulation of different positron emitting radionuclides incorporated in a soft tissue volume

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Segundo Agustín Martínez Ovalle

Monte Carlo calculations were carried out where compounds with positron-emitters radionuclides, like FDG (18F), Acetate (11C), and Ammonium (13N), were incorporated into a soft tissue volume, in the aim to estimate the type of particles produced their energies, their mean free paths, and the absorbed dose at different distances with respect to the center of the volume. The volume was modeled with a radius larger than the maximum range of positrons in order to produce 0.511 keV annihilation gamma-ray photons. With the obtained results the absorbed dose, in various organs and tissues able to metabolize different radiopharmaceutical drugs, can be estimated. The code used was GEANT4.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bünyamin Aygün ◽  
Erdem Şakar ◽  
Abdulhalik Karabulut ◽  
Bünyamin Alım ◽  
Mohammed I. Sayyed ◽  
...  

AbstractIn this study, the fast neutron and gamma-ray absorption capacities of the new glasses have been investigated, which are obtained by doping CoO,CdWO4,Bi2O3, Cr2O3, ZnO, LiF,B2O3 and PbO compounds to SiO2 based glasses. GEANT4 and FLUKA Monte Carlo simulation codes have been used in the planning of the samples. The glasses were produced using a well-known melt-quenching technique. The effective neutron removal cross-sections, mean free paths, half-value layer, and transmission numbers of the fabricated glasses have been calculated through both GEANT4 and FLUKA Monte Carlo simulation codes. Experimental neutron absorbed dose measurements have been carried out. It was found that GS4 glass has the best neutron protection capacity among the produced glasses. In addition to neutron shielding properties, the gamma-ray attenuation capacities, were calculated using newly developed Phy-X/PSD software. The gamma-ray shielding properties of GS1 and GS2 are found to be equivalent to Pb-based glass.


1965 ◽  
Vol 38 (451) ◽  
pp. 541-544 ◽  
Author(s):  
William H. Ellett ◽  
Arthur B. Callahan ◽  
Gordon L. Brownell

2002 ◽  
Vol 57 (4) ◽  
pp. 517-524 ◽  
Author(s):  
Hu-Xia Shi ◽  
Bo-Xian Chen ◽  
Ti-Zhu Li ◽  
Di Yun

Author(s):  
Hammam Oktajianto ◽  
Evi Setiawati

Thyroid radiotherapy is a cancer therapy that is treated by giving radioactive I-131 in Thyroid gland. This cancer is at the ninth from ten of common malignant cancer. A man has higher risk to get Thyroid cancer than a woman has. This organ is lain near human neck. This research aim was to simulate particle track of radiation I-131 and determine an absorbed dose and effective dose in Thyroid and other organs around Thyroid such as Brain, Lung and Cervical vertebrae. The simulation and calculation used Monte Carlo method operated by MCNPX software. Geometry of Thyroid and other organs used ORNL MIRD phantom geometry. From the results, it shown that particle track of radiation was distributed at Thyroid while several particles radiated other organs. The absorbed dose in Thyroid and other organs increased every rising activity of I-131 used, but the absorbed dose in other organs was less than in Thyroid. Radiation effect for damage cancer in Thyroid was shown by an effective dose which it increased every rising activity of I-131 used and the maximum effective dose was at 200 mCi activity of I-131. Although the effective dose in Thyroid increased, the effective dose in other organs like Brain, Lung and Cervical vertebrae was still less than in Thyroid so that the use of I-131 each activity did not really influence other organs around Thyroid.  


Sign in / Sign up

Export Citation Format

Share Document