Advances in identifying stripe rust resistance genes in cereals

2021 ◽  
pp. 39-80
Author(s):  
Tianheng Ren ◽  
◽  
Zhi Li ◽  
Feiquan Tan ◽  
Cheng Jiang ◽  
...  

Stripe rust is one of the most serious wheat diseases of the world, usually resulting in massive loss of grain production. The most effective and environmentally friendly way to control the spread of stripe rust is to plant wheat varieties that carry stripe rust resistance genes. The identification and utilization of stripe rust resistance genes is very important for achieving this goal. This chapter summarizes the hazards of stripe rust and the current progress in the discovery of stripe rust resistance genes. It also introduces the advanced methods to identify Yr genes. The chapter also shows the successful application of Yr genes in wheat breeding program in southwestern China, which is the largest epidemic area of stripe rust in the world. The further identification and applications of Yr genes are also discussed.

Genome ◽  
2008 ◽  
Vol 51 (11) ◽  
pp. 922-927 ◽  
Author(s):  
P. G. Luo ◽  
X. Y. Hu ◽  
Z. L. Ren ◽  
H. Y. Zhang ◽  
K. Shu ◽  
...  

Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat ( Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Mesfin Kebede Gessese

Wheat production started in Australia around 1788 using early maturing varieties adapted to Australian conditions that were able to escape diseases as well as moisture stress conditions. Wheat production is concentrated on mainland Australia in a narrow crescent land considered as the wheat belt occupying an area of about 13.9 million hectares. Rusts are the most important production constraints to wheat production in the world and Australia causing significant yield losses and decreased the qualities of grains. Wheat is affected by three different types of rust diseases: leaf rust, stripe rust or yellow rust, and stem rust. Each species of the rust pathogen has many races or pathotypes that parasitize only on certain varieties of host species, which can only be traced and identified by differential cultivars. Pathotype surveillance is the basis for information on the virulence or pathogenic variations existing in a particular country or wheat growing region of the world. Studies in pathotype variation are conducted in controlled environments using multi-pathotype tests. The currently cultivated commercial wheat varieties of Australia possess leaf rust resistant genes: Lr1, Lr3a, Lr13, Lr13+, Lr14a, Lr17a, Lr17b, Lr20, Lr23, Lr24, Lr26, Lr27, Lr31, Lr34, Lr37, and Lr46; stem rust resistance genes: Sr2, Sr5, Sr8a, Sr8b, Sr9b, Sr9g, Sr11, Sr12, Sr13, Sr15, Sr17, Sr22, Sr24, Sr26, Sr30, Sr36, Sr38, and Sr57; and stripe rust resistance genes: Yr4, Yr9, Yr17, Yr18, Yr27, and Yr33. This paper discusses the historical and current significance of rusts to wheat production in the world with particular reference to Australia viz-a-viz detail description of each of the three rusts and their respective virulence variations through the resistance genes deployed in the commercial cultivars.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1763-1770
Author(s):  
Liang Huang ◽  
Xing Zhi Xiao ◽  
Bo Liu ◽  
Li Gao ◽  
Guo Shu Gong ◽  
...  

Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious fungal disease worldwide, especially in the Huang-Huai-Hai region, a main wheat production area in China. Gene postulation, molecular testing, and pedigree analysis were conducted to determine the presence of stripe rust resistance genes to 15 Pst races in 66 selected commercial wheat cultivars released from 2000 to 2016. In addition, races CYR32, CYR33, and CYR34 were used to evaluate resistance to Pst at the adult-plant stage of wheat in the field. Four Yr genes (Yr9, Yr10, Yr26, and Yr32) were postulated in 24 wheat cultivars either singly or in combination. Thirty-six cultivars might contain unknown Yr genes, whereas no identified Yr gene was postulated in six cultivars. Yr9 was detected at a frequency of 28.8%, and no cultivars carried Yr5, Yr15, or Yr18. Ten cultivars (15.2%) exhibited adult-plant resistance in the field tests with three predominant races. Three cultivars (Langyan 43, Xinong 889, and Yunfeng 139) had all-stage resistance. These results are useful to growers selecting cultivars and to breeders aiming to use more resistance genes to develop new cultivars with effective resistance in order to reduce stripe rust damage.


2011 ◽  
Vol 37 (8) ◽  
pp. 1360-1371 ◽  
Author(s):  
Shi-Qin CAO ◽  
Bo ZHANG ◽  
Ming-Ju LI ◽  
Shi-Chang XU ◽  
Hui-Sheng LUO ◽  
...  

2010 ◽  
Vol 36 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Hong ZHANG ◽  
Zhi-Long REN ◽  
Yin-Gang HU ◽  
Chang-You WANG ◽  
Wan-Quan JI

Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2658-2664
Author(s):  
Tao Liu ◽  
George Fedak ◽  
Lianquan Zhang ◽  
Rangrang Zhou ◽  
Dawn Chi ◽  
...  

There has not been a major wheat stem rust epidemic worldwide since the 1970s, but the emergence of race TTKSK of Puccinia graminis f. sp. tritici in 1998 presented a great threat to the world wheat production. Single disease-resistance genes are usually effective for only several years before the pathogen changes genetically to overcome the resistance. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most common and persistent wheat diseases worldwide. The development of varieties with multiple resistance is the most economical and effective strategy for preventing stripe rust and stem rust, the two main rust diseases constraining wheat production. Plateau 448 has been widely used in the spring wheat growing region in northwest China, but it has become susceptible to stripe rust and is susceptible to TTKSK. To produce more durable resistance to race TTKSK as well as to stripe rust, four stem rust resistance genes (Sr33, Sr36, Sr-Cad, and Sr43) and three stripe rust resistance genes (Yr5, Yr18, and Yr26) were simultaneously introgressed into Plateau 448 to improve its stem rust (Ug99) and stripe rust resistance using a marker-assisted backcrossing strategy combined with phenotypic selection. We obtained 131 BC1F5 lines that pyramided two to four Ug99 resistance genes and one to two Pst resistance genes simultaneously. Thirteen of these lines were selected for their TTKSK resistance, and all of them exhibited near immunity or high resistance to TTKSK. Among the 131 pyramided lines, 95 showed high resistance to mixed Pst races. Nine lines exhibited not only high resistance to TTKSK and Pst but also better agronomic traits and high-molecular-weight glutenin subunit compositions than Plateau 448.


2018 ◽  
Vol 6 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Yong Wang ◽  
Huaizhi Zhang ◽  
Jingzhong Xie ◽  
Bingmin Guo ◽  
Yongxing Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document