scholarly journals Identification of Stripe Rust Resistance Genes in Common Wheat Cultivars From the Huang-Huai-Hai Region of China

Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1763-1770
Author(s):  
Liang Huang ◽  
Xing Zhi Xiao ◽  
Bo Liu ◽  
Li Gao ◽  
Guo Shu Gong ◽  
...  

Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious fungal disease worldwide, especially in the Huang-Huai-Hai region, a main wheat production area in China. Gene postulation, molecular testing, and pedigree analysis were conducted to determine the presence of stripe rust resistance genes to 15 Pst races in 66 selected commercial wheat cultivars released from 2000 to 2016. In addition, races CYR32, CYR33, and CYR34 were used to evaluate resistance to Pst at the adult-plant stage of wheat in the field. Four Yr genes (Yr9, Yr10, Yr26, and Yr32) were postulated in 24 wheat cultivars either singly or in combination. Thirty-six cultivars might contain unknown Yr genes, whereas no identified Yr gene was postulated in six cultivars. Yr9 was detected at a frequency of 28.8%, and no cultivars carried Yr5, Yr15, or Yr18. Ten cultivars (15.2%) exhibited adult-plant resistance in the field tests with three predominant races. Three cultivars (Langyan 43, Xinong 889, and Yunfeng 139) had all-stage resistance. These results are useful to growers selecting cultivars and to breeders aiming to use more resistance genes to develop new cultivars with effective resistance in order to reduce stripe rust damage.

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 497 ◽  
Author(s):  
Mandeep S. Randhawa ◽  
Navtej S. Bains ◽  
Virinder S. Sohu ◽  
Parveen Chhuneja ◽  
Richard M. Trethowan ◽  
...  

Three rust diseases namely; stem rust caused by Puccinia graminis f. sp. tritici (Pgt), leaf rust caused by Puccinia triticina (Pt), and stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), are the most common fungal diseases of wheat (Triticum aestivum L.) and cause significant yield losses worldwide including Australia. Recently characterized stripe rust resistance genes Yr51 and Yr57 are effective against pre- and post-2002 Pst pathotypes in Australia. Similarly, stem rust resistance genes Sr22, Sr26, and Sr50 are effective against the Pgt pathotype TTKSK (Ug99) and its derivatives in addition to commercially important Australian pathotypes. Effectiveness of these genes make them good candidates for combining with known pleiotropic adult plant resistance (PAPR) genes to achieve durable resistance against three rust pathogens. This study was planned to transfer rust resistance genes Yr51, Yr57, Sr22, Sr26, and Sr50 into two Australian (Gladius and Livingston) and two Indian (PBW550 and DBW17) wheat cultivars through marker assisted selection (MAS). These cultivars also carry other rust resistance genes: Gladius carries Lr37/Yr17/Sr38 and Sr24/Lr24; Livingston carries Lr34/Yr18/Sr57, Lr37/Yr17/Sr38, and Sr2; PBW550 and DBW17 carry Lr34/Yr18/Sr57 and Lr26/Yr9/Sr31. Donor sources of Yr51 (AUS91456), Yr57 (AUS91463), Sr22 (Sr22/3*K441), Sr26 (Sr26 WA1), and Sr50 (Dra-1/Chinese Spring ph1b/2/3* Gabo) were crossed with each of the recurrent parents to produce backcross progenies. Markers linked to Yr51 (sun104), Yr57 (gwm389 and BS00062676), Sr22 (cssu22), Sr26 (Sr26#43), and Sr50 (Sr50-5p-F3, R2) were used for their MAS and markers csLV34 (Lr34/Yr18/Sr57), VENTRIUP-LN2 (Lr37/Yr17/Sr38), Sr24#12 (Sr24/Lr24), and csSr2 (Sr2) were used to select genes present in recurrent parents. Progenies of selected individuals were grown and selected under field conditions for plant type and adult plant rust responses. Final selections were genotyped with the relevant markers. Backcross derivatives of these genes were distributed to breeding companies for use as resistance donors.


Genome ◽  
2008 ◽  
Vol 51 (11) ◽  
pp. 922-927 ◽  
Author(s):  
P. G. Luo ◽  
X. Y. Hu ◽  
Z. L. Ren ◽  
H. Y. Zhang ◽  
K. Shu ◽  
...  

Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat ( Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Qingdong Zeng ◽  
Jianhui Wu ◽  
Shengjie Liu ◽  
Xianming Chen ◽  
Fengping Yuan ◽  
...  

Stripe rust caused by Puccinia striiformis f. sp. tritici threatens worldwide wheat production. Growing resistant cultivars is the best way to control this disease. Chinese wheat cultivar Qinnong 142 (QN142) has a high level of adult-plant resistance to stripe rust. To identify quantitative trait loci (QTLs) related to stripe rust resistance, we developed a recombinant inbred line (RIL) population from a cross between QN142 and susceptible cultivar Avocet S. The parents and 165 F6 RILs were evaluated in terms of their stripe rust infection type and disease severity in replicated field tests with six site-year environments. The parents and RILs were genotyped with single-nucleotide polymorphism (SNP) markers. Four stable QTLs were identified in QN142 and mapped to chromosome arms 1BL, 2AL, 2BL, and 6BS. The 1BL QTL was probably the known resistance gene Yr29, the 2BL QTL was in a resistance gene-rich region, and the 2AL and 6BS QTLs might be new. Kompetitive allele specific polymerase chain reaction markers developed from the SNP markers flanking these QTLs were highly polymorphic in a panel of 150 wheat cultivars and breeding lines. These markers could be used in marker-assisted selection for incorporating the stripe rust resistance QTL into new wheat cultivars.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 891-897 ◽  
Author(s):  
B. Bai ◽  
J. Y. Du ◽  
Q. L. Lu ◽  
C. Y. He ◽  
L. J. Zhang ◽  
...  

Stripe rust is a major fungal disease of wheat. It frequently becomes epidemic in southeastern Gansu province, a stripe rust hot spot in China. Evaluations of wheat germplasm response are crucial for developing cultivars to control the disease. In total, 57 wheat cultivars and lines from Europe and other countries, comprising 36 cultivars with documented stripe rust resistance genes and 21 with unknown genes, were tested annually with multiple races of Puccinia striiformis f. sp. tritici in the field at Tianshui in Gansu province from 1993 to 2013. Seven wheat lines were highly resistant, with infection type (IT) 0 during the entire period; 16 were moderately resistant (IT 0;-2); and 26 were moderately susceptible (IT 0;-4), with low maximum disease severity compared with the susceptible control Huixianhong. ‘Strampelli’ and ‘Libellula’, with three and five quantitative trait loci, respectively, for stripe rust resistance have displayed durable resistance in this region for four decades. Ten cultivars, including ‘Lantian 15’, ‘Lantian 26’, and ‘Lantian 31’, with stripe rust resistance derived from European lines, were developed in our breeding program and have made a significant impact on controlling stripe rust in southeastern Gansu. Breeding resistant cultivars with multiple adult-plant resistance genes seems to be a promising strategy in wheat breeding for managing stripe rust in this region and other hot spots.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1302-1312 ◽  
Author(s):  
Z. F. Li ◽  
X. C. Xia ◽  
X. C. Zhou ◽  
Y. C. Niu ◽  
Z. H. He ◽  
...  

Identification of seedling and slow stripe rust resistance genes is important for gene pyramiding, gene deployment, and developing slow-rusting wheat cultivars to control the disease. A total of 98 Chinese lines were inoculated with 26 pathotypes of Puccinia striiformis f. sp. tritici for postulation of stripe rust resistance genes effective at the seedling stage. A total of 135 wheat lines were planted at two locations to characterize their slow rusting responses to stripe rust in the 2003-2004 and 2004-2005 cropping seasons. Genes Yr2, Yr3a, Yr4a, Yr6, Yr7, Yr9, Yr26, Yr27, and YrSD, either singly or in combinations, were postulated in 72 lines, whereas known resistance genes were not identified in the other 26 accessions. The resistance genes Yr9 and Yr26 were found in 42 and 19 accessions, respectively. Yr3a and Yr4a were detected in two lines, and four lines may contain Yr6. Three lines were postulated to possess YrSD, one carried Yr27, and one may possess Yr7. Thirty-three lines showed slow stripe rusting resistance at two locations in both seasons.


Crop Science ◽  
2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Nithya K. Subramanian ◽  
Richard Esten Mason ◽  
Eugene A. Milus ◽  
David E. Moon ◽  
Gina Brown-Guedira

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 483
Author(s):  
Tian Hu ◽  
Xiao Zhong ◽  
Qiang Yang ◽  
Xinli Zhou ◽  
Xin Li ◽  
...  

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases in wheat. Due to the large-scale and widely-distributed planting pattern of wheat, the directional selection pressure of the pathogen is very strong. Therefore, it is urgent to pyramid more stripe rust resistance genes in wheat cultivars to enhance resistance durability and ensure wheat production safety. In this study, two quantitative trait loci (QTL) for adult plant resistance (APR) to stripe rust, QYr.nafu-2BL and QYr.nafu-3BS, were validated and introgressed from wheat line P9897 into three Chinese elite wheat cultivars, Chuanmai 42, Xiangmai 25, and Zhengmai 9023, through marker validation. The three Chinese elite varieties were used as the female parent to cross with wheat line P9897, and they were selfed to the F6 generation. A total of 114 lines were then selected based on field agronomic traits and stripe rust resistance. Four markers (Xcfd73, Xgwm120, Xbarc87 and Xbarc133) linked with the QTL’s regions were employed to screen the 114 F6 lines. Subsequently, 27 lines combining two target QTL from P9897 were selected. The combination of agronomic traits and disease resistance results showed that 13 of these selected lines had favorable application prospects. The promising lines selected in this study could enrich the genetic resources of wheat stripe rust resistance genes, as well as provide material support and a theoretical basis for the prevention and control of wheat stripe rust in China.


2007 ◽  
Vol 116 (3) ◽  
pp. 313-324 ◽  
Author(s):  
Parveen Chhuneja ◽  
Satinder Kaur ◽  
Tosh Garg ◽  
Meenu Ghai ◽  
Simarjit Kaur ◽  
...  

2021 ◽  
pp. 39-80
Author(s):  
Tianheng Ren ◽  
◽  
Zhi Li ◽  
Feiquan Tan ◽  
Cheng Jiang ◽  
...  

Stripe rust is one of the most serious wheat diseases of the world, usually resulting in massive loss of grain production. The most effective and environmentally friendly way to control the spread of stripe rust is to plant wheat varieties that carry stripe rust resistance genes. The identification and utilization of stripe rust resistance genes is very important for achieving this goal. This chapter summarizes the hazards of stripe rust and the current progress in the discovery of stripe rust resistance genes. It also introduces the advanced methods to identify Yr genes. The chapter also shows the successful application of Yr genes in wheat breeding program in southwestern China, which is the largest epidemic area of stripe rust in the world. The further identification and applications of Yr genes are also discussed.


Sign in / Sign up

Export Citation Format

Share Document