scholarly journals Prime Optimization

2021 ◽  
Vol 9 (2) ◽  
pp. 453-458
Author(s):  
Yuly Shipilevsky

This is a pioneering work, introducing a novel class of optimization of objective functions over subsets of primeonly integer points. We show a rich variety of Prime Optimization and mixed problems.

Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


2011 ◽  
Vol 2 (2) ◽  
pp. 181-207
Author(s):  
Beth A. Berkowitz

This article addresses recent arguments that question whether “Judaism,” as such, existed in antiquity or whether the Jewishness of the Second Temple period should be characterized in primarily ethnic terms. At stake is the question of whether it is appropriate to speak of Judaism as an abstract system or religion in this early period. An appeal to the under-used collections of Midrash Aggadah provides the context for new insights, focused around a pericope in Leviticus Rabbah that is preoccupied with this very question. This parashah goes well beyond the ethnicity/ religion binary, producing instead a rich variety of paradigms of Jewish identity that include moral probity, physical appearance, relationship to God, ritual life, political status, economics, demographics, and sexual practice.


2020 ◽  
Vol 8 (4) ◽  
pp. 276-286
Author(s):  
Vu Duc Quyen ◽  
Andrey Ronzhin

Three posterior algorithms NSGA-II, MOGWO and MOPSO to solve the problem of multicriteria optimization of the robotic gripper design are considered. The description of the kinematic model of the developed prototype of the four-fingered gripper for picking tomatoes, its limitations and objective functions used in the optimization of the design are given. The main advantage of the developed prototype is the use of one actuator for the control of the fingers and the suction nozzle. The results of optimization of the kinematic model and the dimensions of the elements of robotic gripper using the considered posterior algorithms are presented.


2014 ◽  
Vol 10 ◽  
pp. 87-89
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh. Nasibullaeva ◽  
E.V. Denisova

In this paper, the motion of a piston in a cylindrical tube is numerically studied with influence of dry and viscous friction and spring elasticity. Leading factors for models with dry and viscous friction are determined. A scheme for performing a full factorial computing experiment is proposed, where fuel consumption per unit time and fuel consumption for the period of periodic flow are chosen as objective functions.


Sign in / Sign up

Export Citation Format

Share Document