scholarly journals Development of Oil Production Forecasting Method based on Deep Learning

Author(s):  
Fargana Abdullayeva ◽  
Yadigar Imamverdiyev
Author(s):  
Wardana Saputra ◽  
Wissem Kirati ◽  
Tadeusz Patzek

We replace the current industry-standard empirical forecasts of oil production from hydrofractured horizontal wells in shales with a statistically and physically robust, accurate and precise approach, using the Bakken shale as an illustration. The proposed oil production forecasting method extends our previous work on predicting fieldwide gas production in the Barnett shale and merges it with our new scaling of oil production in shales. We first divide the existing 14,678 horizontal oil wells in the Bakken into 12 static samples in which depositional settings and completion technologies are similar. For each sample, we construct a purely data-driven P50 well prototype by merging the GEV distribution fits of oil production from appropriate well cohorts. We fit the parameters of our physics-based scaling curve to the statistical well prototypes, and obtain their smooth extrapolations to 30 years on production. By calculating the number of potential wells of each Bakken region, and scheduling future drilling programs, we stack up the extended well prototypes to achieve the most plausible forecast. We predict that Bakken will ultimately produce 5 billion barrels of oil from the existing wells, with the possible increments of 2 and 6 billion barrels from core and noncore areas.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


Author(s):  
Jing Chen ◽  
Anyuan Li ◽  
Chunyan Bao ◽  
Yanhua Dai ◽  
Minghao Liu ◽  
...  

2019 ◽  
Vol 38 ◽  
pp. 248-255 ◽  
Author(s):  
Luca Brunelli ◽  
Chiara Masiero ◽  
Diego Tosato ◽  
Alessandro Beghi ◽  
Gian Antonio Susto

Sign in / Sign up

Export Citation Format

Share Document