CONTRIBUTION OF ENERGY SYSTEMS FOR AEROBIC TRAINING SESSION WITH AND WITHOUT BLOOD FLOW RESTRICTION

2015 ◽  
Author(s):  
Mara Patricia Traina Chacon Mikahil ◽  
Ana Paula Boito Ramkrapes
Life Sciences ◽  
2018 ◽  
Vol 202 ◽  
pp. 103-109 ◽  
Author(s):  
Mohammad-Ali Bahreinipour ◽  
Siyavash Joukar ◽  
Fariborz Hovanloo ◽  
Hamid Najafipour ◽  
Vida Naderi ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Nathan D.W. Smith ◽  
Brendan R. Scott ◽  
Olivier Girard ◽  
Jeremiah J. Peiffer

2018 ◽  
Vol 65 (1) ◽  
pp. 249-260 ◽  
Author(s):  
Michal Wilk ◽  
Michal Krzysztofik ◽  
Mariola Gepfert ◽  
Stanislaw Poprzecki ◽  
Artur Gołaś ◽  
...  

AbstractBlood flow restriction (BFR) combined with resistance training (RT-BFR) shows significant benefits in terms of muscle strength and hypertrophy. Such effects have been observed in clinical populations, in groups of physically active people, and among competitive athletes. These effects are comparable or, in some cases, even more efficient compared to conventional resistance training (CRT). RT-BFR stimulates muscle hypertrophy and improves muscle strength even at low external loads. Since no extensive scientific research has been done in relation to groups of athletes, the aim of the present study was to identify technical, physiological and methodological aspects related to the use of RT-BFR in competitive athletes from various sport disciplines. RT-BFR in groups of athletes has an effect not only on the improvement of muscle strength or muscle hypertrophy, but also on specific motor abilities related to a particular sport discipline. The literature review reveals that most experts do not recommend the use RT-BFR as the only training method, but rather as a complementary method to CRT. It is likely that optimal muscle adaptive changes can be induced by a combination of CRT and RT-BFR. Some research has confirmed benefits of using CRT followed by RT-BFR during a training session. The use of BFR in training also requires adequate progression or modifications in the duration of occlusion in a training session, the ratio of exercises performed with BFR to conventional exercises, the value of pressure or the cuff width.


2016 ◽  
Author(s):  
Ana Paula Boito Ramkrapes ◽  
MARA PATRICIA TRAINA CHACON MIKAHIL ◽  
CLAUDIA R CAVAGLIERI ◽  
ARTHUR FERNANDES GASPARI ◽  
MIGUEL S. CONCEIÇÃO ◽  
...  

Author(s):  
Pierre Sinclair ◽  
Murtaza Kadhum ◽  
Bruce Paton

AbstractThe proven beneficial effects of low-load blood flow restriction training on strength gain has led to further exploration into its application during rehabilitation, where the traditional use of heavy loads may not be feasible. With current evidence showing that low-load blood flow restriction training may be less well tolerated than heavy-load resistance training, this review was conducted to decipher whether intermittently deflating the pressure cuff during rest intervals of a training session improves tolerance to exercise, without compromising strength. Four databases were searched for randomized controlled trials that compared the effect of intermittent versus continuous blood flow restriction training on outcomes of exercise tolerance or strength in adults. Nine studies were identified, with six included in the meta-analysis. No significant difference in rate of perceived exertion was found (SMD-0.06, 95% CI-0.41 to 0.29, p=0.73, I 2=80%). Subgroup analysis excluding studies that introduced bias showed a shift towards favoring the use of intermittent blood flow restriction training (SMD-0.42, 95% CI-0.87 to 0.03, p=0.07, I 2=0%). There was no significant difference in strength gain. Intermittent cuff deflations during training intervals does not improve tolerance to exercise during blood flow restriction training.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michal Wilk ◽  
Robert Trybulski ◽  
Michal Krzysztofik ◽  
Grzegorz Wojdala ◽  
Yuri Campos ◽  
...  

The main goal of the present study was to evaluate the effects of different blood flow restriction (BFR) protocols (continuous and intermittent) on peak bar velocity (PV) and mean bar velocity (MV) during the squat exercise at progressive loads, from 40 to 90% 1RM. Eleven healthy men (age = 23.4 ± 3.1 years; body mass = 88.5 ± 12.1 kg; squat 1RM = 183.2 ± 30.7 kg; resistance training experience, 5.7 ± 3.6 years) performed experimental sessions once a week for 3 weeks in random and counterbalanced order: without BFR (NO-BFR), with intermittent BFR (I-BFR), and with continuous BFR (C-BFR). During the experimental session, the participants performed six sets of the barbell squat exercise with loads from 40 to 90% 1RM. In each set, they performed two repetitions. During the C-BFR session, the cuffs were maintained throughout the training session. During the I-BFR, the cuffs were used only during the exercise and released for each rest interval. The BFR pressure was set to ∼80% arterial occlusion pressure (AOP). Analyses of variance showed a statistically significant interaction for MV (p < 0.02; η2 = 0.18). However, the post hoc analysis did not show significant differences between particular conditions for particular loads. There was no significant condition × load interaction for PV (p = 0.16; η2 = 0.13). Furthermore, there were no main effects for conditions in MV (p = 0.38; η2 = 0.09) as well as in PV (p = 0.94; η2 = 0.01). The results indicate that the different BFR protocols used during lower body resistance exercises did not reduce peak bar velocity and mean bar velocity during the squat exercise performed with various loads.


Sign in / Sign up

Export Citation Format

Share Document