scholarly journals On r-dynamic coloring of some graph operations

2016 ◽  
Vol 1 (1) ◽  
pp. 22 ◽  
Author(s):  
Ika Hesti Agustin ◽  
D. Dafik ◽  
A. Y. Harsya

Let $G$ be a simple, connected and undirected graph. Let $r,k$ be natural number. By a proper $k$-coloring  of a graph $G$, we mean a map $ c : V (G) \rightarrow S$, where $|S| = k$, such that any two adjacent vertices receive different colors. An $r$-dynamic $k$-coloring is a proper $k$-coloring $c$ of $G$ such that $|c(N (v))| \geq min\{r, d(v)\}$ for each vertex $v$ in $V(G)$, where $N (v)$ is the neighborhood of $v$ and $c(S) = \{c(v) : v \in S\}$ for a vertex subset $S$ . The $r$-dynamic chromatic number, written as $\chi_r(G)$, is the minimum $k$ such that $G$ has an $r$-dynamic $k$-coloring. Note that the $1$-dynamic chromatic number of graph is equal to its chromatic number, denoted by $\chi(G)$, and the $2$-dynamic chromatic number of graph has been studied under the name a dynamic chromatic number, denoted by $\chi_d(G)$. By simple observation it is easy to see that $\chi_r(G)\le \chi_{r+1}(G)$, however $\chi_{r+1}(G)-\chi_r(G)$ can be arbitrarily large, for example $\chi(Petersen)=2, \chi_d(Petersen)=3$, but $\chi_3(Petersen)=10$. Thus, finding an exact values of $\chi_r(G)$ is significantly useful. In this paper, we will show some exact values of $\chi_r(G)$ when $G$ is an operation of special graphs.

2019 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Marsidi Marsidi ◽  
Ika Hesti Agustin

A graph  in this paper is nontrivial, finite, connected, simple, and undirected. Graph  consists of a vertex set and edge set. Let u,v be two elements in vertex set, and q is the cardinality of edge set in G, a bijective function from the edge set to the first q natural number is called a vertex local antimagic edge labelling if for any two adjacent vertices and , the weight of  is not equal with the weight of , where the weight of  (denoted by ) is the sum of labels of edges that are incident to . Furthermore, any vertex local antimagic edge labelling induces a proper vertex colouring on where  is the colour on the vertex . The vertex local antimagic chromatic number  is the minimum number of colours taken over all colourings induced by vertex local antimagic edge labelling of . In this paper, we discuss about the vertex local antimagic chromatic number on disjoint union of some family graphs, namely path, cycle, star, and friendship, and also determine the lower bound of vertex local antimagic chromatic number of disjoint union graphs. The chromatic numbers of disjoint union graph in this paper attend the lower bound.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250151 ◽  
Author(s):  
M. BAZIAR ◽  
E. MOMTAHAN ◽  
S. SAFAEEYAN

Let M be an R-module. We associate an undirected graph Γ(M) to M in which nonzero elements x and y of M are adjacent provided that xf(y) = 0 or yg(x) = 0 for some nonzero R-homomorphisms f, g ∈ Hom (M, R). We observe that over a commutative ring R, Γ(M) is connected and diam (Γ(M)) ≤ 3. Moreover, if Γ(M) contains a cycle, then gr (Γ(M)) ≤ 4. Furthermore if ∣Γ(M)∣ ≥ 1, then Γ(M) is finite if and only if M is finite. Also if Γ(M) = ∅, then any nonzero f ∈ Hom (M, R) is monic (the converse is true if R is a domain). For a nonfinitely generated projective module P we observe that Γ(P) is a complete graph. We prove that for a domain R the chromatic number and the clique number of Γ(M) are equal. When R is self-injective, we will also observe that the above adjacency defines a covariant functor between a subcategory of R-MOD and the Category of graphs.


1986 ◽  
Vol 51 (2) ◽  
pp. 374-376 ◽  
Author(s):  
Simon Thomas

If L is a first order language and n is a natural number, then Ln is the set of formulas which only make use of the variables x1,…,xn. While every finite structure is determined up to isomorphism by its theory in L, the same is no longer true in Ln. This simple observation is the source of a number of intriguing questions. For example, Poizat [2] has asked whether a complete theory in Ln which has at least two nonisomorphic finite models must necessarily also have an infinite one. The purpose of this paper is to present some counterexamples to this conjecture.Theorem. For each n ≤ 3 there are complete theories in L2n−2andL2n−1having exactly n + 1 models.In our notation and definitions, we follow Poizat [2]. To test structures for elementary equivalence in Ln, we shall use the modified Ehrenfeucht-Fraïssé games of Immerman [1]. For convenience, we repeat his definition here.Suppose that L is a purely relational language, each of the relations having arity at most n. Let and ℬ be two structures for L. Define the Ln game on and ℬ as follows. There are two players, I and II, and there are n pairs of counters a1, b1, …, an, bn. On each move, player I picks up any of the counters and places it on an element of the appropriate structure.


2013 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Mariza Wenni

Let G and H be two connected graphs. Let c be a vertex k-coloring of aconnected graph G and let = fCg be a partition of V (G) into the resultingcolor classes. For each v 2 V (G), the color code of v is dened to be k-vector: c1; C2; :::; Ck(v) =(d(v; C1); d(v; C2); :::; d(v; Ck)), where d(v; Ci) = minfd(v; x) j x 2 Cg, 1 i k. Ifdistinct vertices have distinct color codes with respect to , then c is called a locatingcoloring of G. The locating chromatic number of G is the smallest natural number ksuch that there are locating coloring with k colors in G. The Cartesian product of graphG and H is a graph with vertex set V (G) V (H), where two vertices (a; b) and (a)are adjacent whenever a = a0and bb02 E(H), or aa0i2 E(G) and b = b, denotedby GH. In this paper, we will study about the locating chromatic numbers of thecartesian product of two paths, the cartesian product of paths and complete graphs, andthe cartesian product of two complete graphs.


2021 ◽  
Vol 30 (1) ◽  
pp. 41-48
Author(s):  
V. LOKESHA ◽  
Y. SHANTHAKUMARI ◽  
K. ZEBA YASMEEN

Graph energies draw the greater attention of the scientific community due to their direct applicability in molecular chemistry. In this paper, we establish the energy of a graph obtained by the means of some graph operations. The energy of the product of graph Kn × G, where Kn is a complete graph and G is a simple undirected graph and energy of the corresponding digraph are estimated. Further, the duplication graph DG is considered and proved that the energy E(DG) = 2E(G) and E(DGσ) = 2E(Gσ).


Author(s):  
B. Akhavan Mahdavi ◽  
M. Tavakoli ◽  
F. Rahbarnia ◽  
Alireza Ashrafi

A star coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] such that no path of length 3 in [Formula: see text] is bicolored. In this paper, the star chromatic number of join of graphs is computed. Some sharp bounds for the star chromatic number of corona, lexicographic, deleted lexicographic and hierarchical product of graphs together with a conjecture on the star chromatic number of lexicographic product of graphs are also presented.


2018 ◽  
Vol 10 (1) ◽  
pp. 185-196 ◽  
Author(s):  
R. Sharafdini ◽  
A.Z. Abdian

Let $G$ be a simple undirected graph. Then the signless Laplacian matrix of $G$ is defined as $D_G + A_G$ in which $D_G$ and $A_G$ denote the degree matrix and the adjacency matrix of $G$, respectively. The graph $G$ is said to be determined by its signless Laplacian spectrum (DQS, for short), if any graph having the same signless Laplacian spectrum as $G$ is isomorphic to $G$. We show that $G\sqcup rK_2$ is determined by its signless Laplacian spectra under certain conditions, where $r$ and $K_2$ denote a natural number and the complete graph on two vertices, respectively. Applying these results, some DQS graphs with independent edges are obtained.


2018 ◽  
Vol 5 (2) ◽  
pp. 7-10
Author(s):  
Lavinya V ◽  
Vijayalakshmi D ◽  
Priyanka S

A Star coloring of an undirected graph G is a proper vertex coloring of G in which every path on four vertices contains at least three distinct colors. The Star chromatic number of an undirected graph Χs(G), denoted by(G) is the smallest integer k for which G admits a star coloring with k colors. In this paper, we obtain the exact value of the Star chromatic number of Middle graph of Tadpole graph, Snake graph, Ladder graph and Sunlet graphs denoted by M(Tm,n), M(Tn),M(Ln) and M(Sn) respectively.


Sign in / Sign up

Export Citation Format

Share Document