scholarly journals The Structure Of Functional Graphs For Functions From A Finite Domain To Itself For Which A Half Iterate Exists

2021 ◽  
Vol 8 (1) ◽  
pp. 1-32
Author(s):  
Paweł Marcin Kozyra ◽  
Keyword(s):  
2012 ◽  
Vol 67 (12) ◽  
pp. 665-673 ◽  
Author(s):  
Kourosh Parand ◽  
Mehran Nikarya ◽  
Jamal Amani Rad ◽  
Fatemeh Baharifard

In this paper, a new numerical algorithm is introduced to solve the Blasius equation, which is a third-order nonlinear ordinary differential equation arising in the problem of two-dimensional steady state laminar viscous flow over a semi-infinite flat plate. The proposed approach is based on the first kind of Bessel functions collocation method. The first kind of Bessel function is an infinite series, defined on ℝ and is convergent for any x ∊ℝ. In this work, we solve the problem on semi-infinite domain without any domain truncation, variable transformation basis functions or transformation of the domain of the problem to a finite domain. This method reduces the solution of a nonlinear problem to the solution of a system of nonlinear algebraic equations. To illustrate the reliability of this method, we compare the numerical results of the present method with some well-known results in order to show the applicability and efficiency of our method.


1990 ◽  
Vol 57 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Z. Dursunkaya ◽  
S. Nair

The heat conduction and the moving solid-liquid interface in a finite region is studied numerically. A Fourier series expansion is used in both phases for spatial temperature distribution, and the differential equations are converted to an infinite number of ordinary differential equations in time. These equations are solved iteratively for the interface location as well as for the temperature distribution. The results are compared with existing solutions for low Stefan numbers. New results are presented for higher Stefan numbers for which solutions are unavailable.


Game AI Pro 2 ◽  
2015 ◽  
pp. 283-302
Author(s):  
Leif Foged ◽  
Ian Horswill

Author(s):  
Krishnendu Chatterjee ◽  
Amir Kafshdar Goharshady ◽  
Rasmus Ibsen-Jensen ◽  
Andreas Pavlogiannis

AbstractInterprocedural data-flow analyses form an expressive and useful paradigm of numerous static analysis applications, such as live variables analysis, alias analysis and null pointers analysis. The most widely-used framework for interprocedural data-flow analysis is IFDS, which encompasses distributive data-flow functions over a finite domain. On-demand data-flow analyses restrict the focus of the analysis on specific program locations and data facts. This setting provides a natural split between (i) an offline (or preprocessing) phase, where the program is partially analyzed and analysis summaries are created, and (ii) an online (or query) phase, where analysis queries arrive on demand and the summaries are used to speed up answering queries.In this work, we consider on-demand IFDS analyses where the queries concern program locations of the same procedure (aka same-context queries). We exploit the fact that flow graphs of programs have low treewidth to develop faster algorithms that are space and time optimal for many common data-flow analyses, in both the preprocessing and the query phase. We also use treewidth to develop query solutions that are embarrassingly parallelizable, i.e. the total work for answering each query is split to a number of threads such that each thread performs only a constant amount of work. Finally, we implement a static analyzer based on our algorithms, and perform a series of on-demand analysis experiments on standard benchmarks. Our experimental results show a drastic speed-up of the queries after only a lightweight preprocessing phase, which significantly outperforms existing techniques.


2021 ◽  
Author(s):  
Thomas TJOCK-MBAGA ◽  
Patrice Ele Abiama ◽  
Jean Marie Ema'a Ema'a ◽  
Germain Hubert Ben-Bolie

Abstract This study derives an analytical solution of a one-dimensional (1D) advection-dispersion equation (ADE) for solute transport with two contaminant sources that takes into account the source term. For a heterogeneous medium, groundwater velocity is considered as a linear function while the dispersion as a nth-power of linear function of space and analytical solutions are obtained for and . The solution in a heterogeneous finite domain with unsteady coefficients is obtained using the Generalized Integral Transform Technique (GITT) with a new regular Sturm-Liouville Problem (SLP). The solutions are validated with the numerical solutions obtained using MATLAB pedpe solver and the existing solution from the proposed solutions. We exanimated the influence of the source term, the heterogeneity parameters and the unsteady coefficient on the solute concentration distribution. The results show that the source term produces a solute build-up while the heterogeneity level decreases the concentration level in the medium. As an illustration, model predictions are used to estimate the time histories of the radiological doses of uranium at different distances from the sources boundary in order to understand the potential radiological impact on the general public.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 641
Author(s):  
Wang Huang ◽  
Jianjun Yang ◽  
Jan Sladek ◽  
Vladimir Sladek ◽  
Pihua Wen

The modulus of elasticity of some materials changes under tensile and compressive states is simulated by constructing a typical material nonlinearity in a numerical analysis in this paper. The meshless Finite Block Method (FBM) has been developed to deal with 3D semi-infinite structures in the bimodular materials in this paper. The Lagrange polynomial interpolation is utilized to construct the meshless shape function with the mapping technique to transform the irregular finite domain or semi-infinite physical solids into a normalized domain. A shear modulus strategy is developed to present the nonlinear characteristics of bimodular material. In order to verify the efficiency and accuracy of FBM, the numerical results are compared with both analytical and numerical solutions provided by Finite Element Method (FEM) in four examples.


Sign in / Sign up

Export Citation Format

Share Document