scholarly journals Semi-Infinite Structure Analysis with Bimodular Materials with Infinite Element

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 641
Author(s):  
Wang Huang ◽  
Jianjun Yang ◽  
Jan Sladek ◽  
Vladimir Sladek ◽  
Pihua Wen

The modulus of elasticity of some materials changes under tensile and compressive states is simulated by constructing a typical material nonlinearity in a numerical analysis in this paper. The meshless Finite Block Method (FBM) has been developed to deal with 3D semi-infinite structures in the bimodular materials in this paper. The Lagrange polynomial interpolation is utilized to construct the meshless shape function with the mapping technique to transform the irregular finite domain or semi-infinite physical solids into a normalized domain. A shear modulus strategy is developed to present the nonlinear characteristics of bimodular material. In order to verify the efficiency and accuracy of FBM, the numerical results are compared with both analytical and numerical solutions provided by Finite Element Method (FEM) in four examples.

Author(s):  
M. M. Khader ◽  
Ibrahim Al-Dayel

The propose of this paper is to introduce and investigate a highly accurate technique for solving the fractional Logistic and Ricatti differential equations of variable-order. We consider these models with the most common nonsingular Atangana–Baleanu–Caputo (ABC) fractional derivative which depends on the Mittag–Leffler kernel. The proposed numerical technique is based upon the fundamental theorem of the fractional calculus as well as the Lagrange polynomial interpolation. We satisfy the efficiency and the accuracy of the given procedure; and study the effect of the variation of the fractional-order [Formula: see text] on the behavior of the solutions due to the presence of ABC-operator by evaluating the solution with different values of [Formula: see text]. The results show that the given procedure is an easy and efficient tool to investigate the solution for such models. We compare the numerical solutions with the exact solution, thereby showing excellent agreement which we have found by applying the ABC-derivatives. We observe the chaotic solutions with some fractional-variable-order functions.


2015 ◽  
Vol 665 ◽  
pp. 257-260
Author(s):  
M. Li ◽  
M. Lei ◽  
C. Shi ◽  
P.H. Wen ◽  
M.H. Aliabadi

The Finite Block Method (FBM) for computing the Stress Intensity Factors (SIFs) and the T-stress under transient dynamic load is presented. In order to capture the stress intensity factor and the T-stress, the Williams' series of stress function is introduced in the circular core for statics generally. In the Laplace domain, the Deng's series of stress and displacement is too complicated to be used easily like Williams' series. However, the numerical solutions show that Williams' solution of series is still valid with smaller core size. Comparisons have been made with the solutions given by the finite element method (ABAQUS).


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hashim M. Alshehri ◽  
Aziz Khan

In this paper, a mathematical fractional order Hepatitis C virus (HCV) spread model is presented for an analytical and numerical study. The model is a fractional order extension of the classical model. The paper includes the existence, singularity, Hyers-Ulam stability, and numerical solutions. Our numerical results are based on the Lagrange polynomial interpolation. We observe that the model of fractional order has the same behavior of the solutions as the integer order existing model.


2021 ◽  
Author(s):  
Thomas TJOCK-MBAGA ◽  
Patrice Ele Abiama ◽  
Jean Marie Ema'a Ema'a ◽  
Germain Hubert Ben-Bolie

Abstract This study derives an analytical solution of a one-dimensional (1D) advection-dispersion equation (ADE) for solute transport with two contaminant sources that takes into account the source term. For a heterogeneous medium, groundwater velocity is considered as a linear function while the dispersion as a nth-power of linear function of space and analytical solutions are obtained for and . The solution in a heterogeneous finite domain with unsteady coefficients is obtained using the Generalized Integral Transform Technique (GITT) with a new regular Sturm-Liouville Problem (SLP). The solutions are validated with the numerical solutions obtained using MATLAB pedpe solver and the existing solution from the proposed solutions. We exanimated the influence of the source term, the heterogeneity parameters and the unsteady coefficient on the solute concentration distribution. The results show that the source term produces a solute build-up while the heterogeneity level decreases the concentration level in the medium. As an illustration, model predictions are used to estimate the time histories of the radiological doses of uranium at different distances from the sources boundary in order to understand the potential radiological impact on the general public.


2014 ◽  
Vol 6 (5) ◽  
pp. 129-143
Author(s):  
Mallouki Nasreddine ◽  
Nsiri Bechir ◽  
Walid Hakimi ◽  
Mahmoud Ammar

Author(s):  
Sundar Namala ◽  
Rizwan Uddin

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). The standard application of NIM is restricted to domains that have boundaries parallel to one of the coordinate axes/palnes (in 2D/3D). The hybrid nodal-integral/finite-element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. Resulting hybrid numerical scheme is implemented in a parallel framework in Fortran and solved using PETSc. The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second order accurate in both space and time. The order of approximations used for the development of the scheme are also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.


Sign in / Sign up

Export Citation Format

Share Document