scholarly journals TISSUE ENGINEERING IN MAXILLOFACIAL BONE RECONSTRUCTION

Author(s):  
David Kamadjaja

Maxillofacial bone defects due to tumor resection, trauma or infections should be reconstructed to maintain the bone continuity in order to preserve its masticatory, speech and esthetic functions. Autogenous bone graft have been the gold standard for mandibular defects reconstruction, however, it is associated with limitation in volume and availability as well as the donor site morbidities. Tissue engineering approach has been proved to be a good alternative to overcome the limitation of autogenous bone graft. Tissue engineering studies have been conducted combining various sources of mesenchymal stem cell, scaffolds, and or signaling molecules. The paper aims to provide information on the development of bone tissue engineering researches to reconstruct bone defects through results of numerous studies obtained in the English literature. As the conclusion, bone tissue engineering is a potential approach to reconstruct maxillofacial bone defects. Keywords: scaffold,osteoconduction, mesenchymal stem cell, bone regeneration, bone integration

2007 ◽  
Vol 330-332 ◽  
pp. 963-966 ◽  
Author(s):  
Lei Liu ◽  
Run Liang Chen ◽  
Yun Feng Lin ◽  
Cai Li ◽  
Wei Dong Tian ◽  
...  

Bone tissue engineering is a promising way to repair of bone defects. To choose a proper scaffold is still a disputable problem in bone tissue engineering. This study aimed to compare the effects of repairing critical calvarial defects with the compounds of autogenous bone marrow stromal cells (BMSCs) and coral hydroxyapatite(CHA), hydroxyapatite/ tricalcium phosphate (HA/TCP), poly(lactide-co-glycolide) (PLGA) and alginate (AG). The results showed that CHA and AG were satisfactory bone tissues engineering scaffolds among the four kinds of materials. BMSCs/CHA and BMSCs/AG are promising techniques for reconstruction of bone defects.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
Shen Ji ◽  
Murat Guvendiren

There is a growing interest in developing 3D porous scaffolds with tunable architectures for bone tissue engineering. Surface topography has been shown to control stem cell behavior including differentiation. In this study, we printed 3D porous scaffolds with wavy or linear patterns to investigate the effect of wavy scaffold architecture on human mesenchymal stem cell (hMSC) osteogenesis. Five distinct wavy scaffolds were designed using sinusoidal waveforms with varying wavelengths and amplitudes, and orthogonal scaffolds were designed using linear patterns. We found that hMSCs attached to wavy patterns, spread by taking the shape of the curvatures presented by the wavy patterns, exhibited an elongated shape and mature focal adhesion points, and differentiated into the osteogenic lineage. When compared to orthogonal scaffolds, hMSCs on wavy scaffolds showed significantly enhanced osteogenesis, indicated by higher calcium deposition, alkaline phosphatase activity, and osteocalcin staining. This study aids in the development of 3D scaffolds with novel architectures to direct stem osteogenesis for bone tissue engineering.


2010 ◽  
Vol 16 (2) ◽  
pp. 225-235 ◽  
Author(s):  
Barbara Pui Chan ◽  
Ting Yan Hui ◽  
Mei Yi Wong ◽  
Kevin Hak Kong Yip ◽  
Godfrey Chi Fung Chan

2019 ◽  
Vol 11 (9) ◽  
pp. 8749-8762 ◽  
Author(s):  
Chen Zhao ◽  
Nader Taheri Qazvini ◽  
Monirosadat Sadati ◽  
Zongyue Zeng ◽  
Shifeng Huang ◽  
...  

2019 ◽  
Vol 34 (6) ◽  
pp. 361-367 ◽  
Author(s):  
Chaolemeng Bao ◽  
Mark S.K. Chong ◽  
Lei Qin ◽  
Yiping Fan ◽  
Erin Yiling Teo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document