scholarly journals Analysis of multimodal stochastic oscillations in a biochemical reaction model

Author(s):  
I.A. Bashkirtseva ◽  
◽  
S.S. Zaitseva ◽  
Author(s):  
Ahmet Yildirim ◽  
Ahmet Gökdogan ◽  
Mehmet Merdan

In this paper, approximate analytical solution of biochemical reaction model is used by the multi-step differential transform method (MsDTM) based on classical differential transformation method (DTM). Numerical results are compared to those obtained by the fourth-order Runge-Kutta method to illustrate the preciseness and effectiveness of the proposed method. Results are given explicit and graphical form.


Author(s):  
Sotos C. Generalis ◽  
Gregory M Cartland Glover

Earlier investigations (Cartland Glover et al., 2004) into the use of computational fluid dynamics (CFD) for the modelling of gas-liquid and gas-liquid-solid flow allowed a simple biochemical reaction model to be implemented. A single plane mesh was used to represent the transport and reaction of molasses, the mould Aspergillus niger and citric acid in a bubble column with a height to diameter aspect ratio of 20:1. Two specific growth rates were used to examine the impact that biomass growth had on the local solids concentration and the effect this had on the local hydrodynamics of the bubble column.


2015 ◽  
Vol 19 (4) ◽  
pp. 1249-1253 ◽  
Author(s):  
Shuqiang Wang ◽  
Yanyan Shen ◽  
Jinxing Hu ◽  
Ning Li ◽  
Dewei Zeng

In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger information capacity and is more efficient in information transmission. This is consistent with theory of evolution.


Sign in / Sign up

Export Citation Format

Share Document