Effect of Bridge Exercise Combined with Functional Electrical Stimulation on Trunk Muscle Activity and Balance in Stroke Patients

2021 ◽  
Vol 12 (2) ◽  
pp. 2323-2330
Author(s):  
Jeongil Kang ◽  
Daekeun Jeong ◽  
Sinhaeng Heo
2020 ◽  
pp. 833-851
Author(s):  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
Anwesha Banerjee ◽  
D.N. Tibarewala

Loss or impairment in the ability of muscle movement or sensation is called Paralysis which is caused by disruption of communication of nerve impulses along the pathway from the brain to the muscles. One of the principal reasons causing paralysis is Spinal Cord Injury (SCI) and Neurological rehabilitation by using neuro-prostheses, based on Functional Electrical Stimulation (FES) is extensively used for its treatment. Impaired muscles are activated by applying small amplitude electrical current. Electromyography (EMG), the recording of biosignals generated by muscle activity during the application of FES can be used as the control signal for FES based rehabilitative devices. This method is predominantly used for restoring upper extremity functioning (wrist, hand, elbow, etc.), standing, walking (speed, pattern) in stroke patients. FES, collaborated with conventional methods, has the potential to be utilized as a useful tool for rehabilitation and restoration of muscle strength, metabolic responses etc. in paralyzed patients.


Author(s):  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
Anwesha Banerjee ◽  
D.N. Tibarewala

Loss or impairment in the ability of muscle movement or sensation is called Paralysis which is caused by disruption of communication of nerve impulses along the pathway from the brain to the muscles. One of the principal reasons causing paralysis is Spinal Cord Injury (SCI) and Neurological rehabilitation by using neuro-prostheses, based on Functional Electrical Stimulation (FES) is extensively used for its treatment. Impaired muscles are activated by applying small amplitude electrical current. Electromyography (EMG), the recording of biosignals generated by muscle activity during the application of FES can be used as the control signal for FES based rehabilitative devices. This method is predominantly used for restoring upper extremity functioning (wrist, hand, elbow, etc.), standing, walking (speed, pattern) in stroke patients. FES, collaborated with conventional methods, has the potential to be utilized as a useful tool for rehabilitation and restoration of muscle strength, metabolic responses etc. in paralyzed patients.


2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Antonino Casabona ◽  
Maria Stella Valle ◽  
Claudio Dominante ◽  
Luca Laudani ◽  
Maria Pia Onesta ◽  
...  

The benefits of functional electrical stimulation during cycling (FES-cycling) have been ascertained following spinal cord injury. The instrumented pendulum test was applied to chronic paraplegic patients to investigate the effects of FES-cycling of different duration (20-min vs. 40-min) on biomechanical and electromyographic characterization of knee mobility. Seven adults with post-traumatic paraplegia attended two FES-cycling sessions, a 20-min and a 40-min one, in a random order. Knee angular excursion, stiffness and viscosity were measured using the pendulum test before and after each session. Surface electromyographic activity was recorded from the rectus femoris (RF) and biceps femoris (BF) muscles. FES-cycling led to reduced excursion (p < 0.001) and increased stiffness (p = 0.005) of the knee, which was more evident after the 20-min than 40-min session. Noteworthy, biomechanical changes were associated with an increase of muscle activity and changes in latency of muscle activity only for 20-min, with anticipated response times for RF (p < 0.001) and delayed responses for BF (p = 0.033). These results indicate that significant functional changes in knee mobility can be achieved by FES-cycling for 20 min, as evaluated by the pendulum test in patients with chronic paraplegia. The observed muscle behaviour suggests modulatory effects of exercise on spinal network aimed to partially restore automatic neuronal processes.


2012 ◽  
Vol 35 (3) ◽  
pp. 506-510 ◽  
Author(s):  
Hsin-Chang Lo ◽  
Yung-Chun Hsu ◽  
Ya-Hsin Hsueh ◽  
Chun-Yu Yeh

2008 ◽  
Vol 100 (1) ◽  
pp. 482-494 ◽  
Author(s):  
Chad V. Anderson ◽  
Andrew J. Fuglevand

Functional electrical stimulation (FES) involves artificial activation of muscles with implanted electrodes to restore motor function in paralyzed individuals. The range of motor behaviors that can be generated by FES, however, is limited to a small set of preprogrammed movements such as hand grasp and release. A broader range of movements has not been implemented because of the substantial difficulty associated with identifying the patterns of muscle stimulation needed to elicit specified movements. To overcome this limitation in controlling FES systems, we used probabilistic methods to estimate the levels of muscle activity in the human arm during a wide range of free movements based on kinematic information of the upper limb. Conditional probability distributions were generated based on hand kinematics and associated surface electromyographic (EMG) signals from 12 arm muscles recorded during a training task involving random movements of the arm in one subject. These distributions were then used to predict in four other subjects the patterns of muscle activity associated with eight different movement tasks. On average, about 40% of the variance in the actual EMG signals could be accounted for in the predicted EMG signals. These results suggest that probabilistic methods ultimately might be used to predict the patterns of muscle stimulation needed to produce a wide array of desired movements in paralyzed individuals with FES.


Sign in / Sign up

Export Citation Format

Share Document