scholarly journals Probability-Based Prediction of Activity in Multiple Arm Muscles: Implications for Functional Electrical Stimulation

2008 ◽  
Vol 100 (1) ◽  
pp. 482-494 ◽  
Author(s):  
Chad V. Anderson ◽  
Andrew J. Fuglevand

Functional electrical stimulation (FES) involves artificial activation of muscles with implanted electrodes to restore motor function in paralyzed individuals. The range of motor behaviors that can be generated by FES, however, is limited to a small set of preprogrammed movements such as hand grasp and release. A broader range of movements has not been implemented because of the substantial difficulty associated with identifying the patterns of muscle stimulation needed to elicit specified movements. To overcome this limitation in controlling FES systems, we used probabilistic methods to estimate the levels of muscle activity in the human arm during a wide range of free movements based on kinematic information of the upper limb. Conditional probability distributions were generated based on hand kinematics and associated surface electromyographic (EMG) signals from 12 arm muscles recorded during a training task involving random movements of the arm in one subject. These distributions were then used to predict in four other subjects the patterns of muscle activity associated with eight different movement tasks. On average, about 40% of the variance in the actual EMG signals could be accounted for in the predicted EMG signals. These results suggest that probabilistic methods ultimately might be used to predict the patterns of muscle stimulation needed to produce a wide array of desired movements in paralyzed individuals with FES.

2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Antonino Casabona ◽  
Maria Stella Valle ◽  
Claudio Dominante ◽  
Luca Laudani ◽  
Maria Pia Onesta ◽  
...  

The benefits of functional electrical stimulation during cycling (FES-cycling) have been ascertained following spinal cord injury. The instrumented pendulum test was applied to chronic paraplegic patients to investigate the effects of FES-cycling of different duration (20-min vs. 40-min) on biomechanical and electromyographic characterization of knee mobility. Seven adults with post-traumatic paraplegia attended two FES-cycling sessions, a 20-min and a 40-min one, in a random order. Knee angular excursion, stiffness and viscosity were measured using the pendulum test before and after each session. Surface electromyographic activity was recorded from the rectus femoris (RF) and biceps femoris (BF) muscles. FES-cycling led to reduced excursion (p < 0.001) and increased stiffness (p = 0.005) of the knee, which was more evident after the 20-min than 40-min session. Noteworthy, biomechanical changes were associated with an increase of muscle activity and changes in latency of muscle activity only for 20-min, with anticipated response times for RF (p < 0.001) and delayed responses for BF (p = 0.033). These results indicate that significant functional changes in knee mobility can be achieved by FES-cycling for 20 min, as evaluated by the pendulum test in patients with chronic paraplegia. The observed muscle behaviour suggests modulatory effects of exercise on spinal network aimed to partially restore automatic neuronal processes.


2020 ◽  
pp. 833-851
Author(s):  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
Anwesha Banerjee ◽  
D.N. Tibarewala

Loss or impairment in the ability of muscle movement or sensation is called Paralysis which is caused by disruption of communication of nerve impulses along the pathway from the brain to the muscles. One of the principal reasons causing paralysis is Spinal Cord Injury (SCI) and Neurological rehabilitation by using neuro-prostheses, based on Functional Electrical Stimulation (FES) is extensively used for its treatment. Impaired muscles are activated by applying small amplitude electrical current. Electromyography (EMG), the recording of biosignals generated by muscle activity during the application of FES can be used as the control signal for FES based rehabilitative devices. This method is predominantly used for restoring upper extremity functioning (wrist, hand, elbow, etc.), standing, walking (speed, pattern) in stroke patients. FES, collaborated with conventional methods, has the potential to be utilized as a useful tool for rehabilitation and restoration of muscle strength, metabolic responses etc. in paralyzed patients.


1991 ◽  
Vol 19 (3) ◽  
pp. 303-316 ◽  
Author(s):  
Dejan Popovic ◽  
Tessa Gordon ◽  
Victor F. Rafuse ◽  
Arthur Prochazka

1991 ◽  
Vol 71 (4) ◽  
pp. 1346-1354 ◽  
Author(s):  
D. A. Wiegand ◽  
B. Latz

Previous investigators (van Lunteren et al. J. Appl. Physiol. 62: 582–590, 1987) have suggested that the geniohyoid and sternohyoid muscles may act as upper airway dilators in the cat. To investigate the effect of geniohyoid and sternohyoid contraction on inspiratory upper airway resistance (UAR), we studied five adult male cats anesthetized with ketamine and xylazine during spontaneous room-air breathing. Inspiratory nasal airflow was measured by sealing the lips and constructing a nose mask. Supraglottic pressure was measured using a transpharyngeal catheter placed above the larynx. Mask pressure was measured using a separate catheter. Geniohyoid and sternohyoid lengths were determined by sonomicrometry. Geniohyoid and sternohyoid contraction was stimulated by direct muscle electrical stimulation with implanted wire electrodes. Mean inspiratory UAR was determined for spontaneous breaths under three conditions: 1) baseline (no muscle stimulation), 2) geniohyoid contraction alone, and 3) sternohyoid contraction alone. Geniohyoid contraction alone produced no significant reduction in inspiratory UAR [unstimulated, 17.75 +/- 0.86 (SE) cmH2O.l-1.s; geniohyoid contraction, 19.24 +/- 1.10]. Sternohyoid contraction alone also produced no significant reduction in inspiratory UAR (unstimulated, 15.74 +/- 0.92 cmH2O.l-1.s; sternohyoid contraction, 14.78 +/- 0.78). Simultaneous contraction of the geniohyoid and sternohyoid muscles over a wide range of muscle lengths produced no consistent change in inspiratory UAR. The geniohyoid and sternohyoid muscles do not appear to function consistently as upper airway dilator muscles when UAR is used as an index of upper airway patency in the cat.


2021 ◽  
Author(s):  
Anthony L. Bazler ◽  
David H. Myszka ◽  
Andrew P. Murray

Abstract This paper presents an investigation of a mechanism to improve the power throughput of persons with tetra- or paraplegia pedaling via functional electrical stimulation (FES). FES stimulates muscle contraction with small electrical currents and has proven useful in building muscle in patients while relieving soreness and promoting cardiovascular health. An FES-stimulated cyclist produces power that is an order of magnitude less than an able-bodied cyclist. At these reduced power levels, many difficulties associated with FES cycling become apparent, namely inactive zones. Inactive zones are defined by the leg being in a position where muscle stimulation is unable to produce power to propel the tricycle forward. A possibility for reducing inactive zones and increasing the power throughput of the cyclist is to alter the motion of a cyclist’s legs. Bicycles have recently been marketed that feature pedaling mechanisms that employ alternate leg motions. This work considers using a four-bar and ratchet-and-pawl linkage in the redesign of a performance tricycle piloted by an FES-stimulated rider. Quasi-static and power models have been optimized for this cycling architecture yielding a design that suggests a 79% increase in throughput power for some FES cyclists. Multiple sets of dimensions are compared against design criteria to identify an ideal design.


Author(s):  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
Anwesha Banerjee ◽  
D.N. Tibarewala

Loss or impairment in the ability of muscle movement or sensation is called Paralysis which is caused by disruption of communication of nerve impulses along the pathway from the brain to the muscles. One of the principal reasons causing paralysis is Spinal Cord Injury (SCI) and Neurological rehabilitation by using neuro-prostheses, based on Functional Electrical Stimulation (FES) is extensively used for its treatment. Impaired muscles are activated by applying small amplitude electrical current. Electromyography (EMG), the recording of biosignals generated by muscle activity during the application of FES can be used as the control signal for FES based rehabilitative devices. This method is predominantly used for restoring upper extremity functioning (wrist, hand, elbow, etc.), standing, walking (speed, pattern) in stroke patients. FES, collaborated with conventional methods, has the potential to be utilized as a useful tool for rehabilitation and restoration of muscle strength, metabolic responses etc. in paralyzed patients.


2019 ◽  
Vol 33 (9) ◽  
pp. 707-717 ◽  
Author(s):  
David A. Cunningham ◽  
Jayme S. Knutson ◽  
Vishwanath Sankarasubramanian ◽  
Kelsey A. Potter-Baker ◽  
Andre G. Machado ◽  
...  

Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation. Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere. Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES. Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.


Sign in / Sign up

Export Citation Format

Share Document