scholarly journals Tubular surface around a Legendre curve in BCV spaces

2016 ◽  
Vol 4 (2) ◽  
pp. 61-61
Author(s):  
Abdullah Yildirim
2010 ◽  
Vol 29 (12) ◽  
pp. 1945-1958 ◽  
Author(s):  
Vandana Mohan ◽  
Ganesh Sundaramoorthi ◽  
Allen Tannenbaum

2019 ◽  
Vol 2 (2) ◽  
pp. 63-64
Author(s):  
Nabiha Saghar ◽  
Eric Lepp ◽  
Ahmed Ead ◽  
Jason Carey

In this design study, a model airplane wing, partially constructed from braided composite panels, was made for the purpose of demonstrating the applications of braided composites for aerospace components. Fibres of Kevlar® were braided together along a tubular surface, then subsequently cut and unrolled to form two planar sheets of interlaced yarns that could be laid down in a 3D printed mold to later be coated in resin. The mold consisted of four parts: two female parts to shape the composite wing panels and two male parts to compress the composite. When connected together they form a fused core. A fibre sheet was draped over each female part, and its extraneous edges were folded inward to form a second layer as reinforcement. Each sheet was then laid up with Ecopoxy® resin and allowed to cure while sandwiched between the female mold and its corresponding male component. Upon disassembly of the mold system, a braided composite wing panel had formed upon both halves of the 3D printed core. The external portion of each panel was found to be smooth with few irregularities that could potentially compromise their aerodynamic performance. The mold was constructed to facilitate the process of cold-curing rather than curing at an elevated temperature. For heated cure process, the use of metal would be recommended because it generally deforms negligibly through heating and cooling. A metal mold would also be used to ease the process of debonding from the composite materials. Care should be taken to ensure that fibre orientation is consistent. The results illustrate how a mold can be fabricated to facilitate the process of curing braided composites, and can serve to improve the quality of products that require a higher strength to weight ratio.  


1969 ◽  
Vol 7 (1) ◽  
pp. 79-84
Author(s):  
E. P. Volchkov ◽  
V. Ya. Levchenko
Keyword(s):  

1982 ◽  
Vol 242 (4) ◽  
pp. F321-F330 ◽  
Author(s):  
E. Gonzalez ◽  
P. Carpi-Medina ◽  
G. Whittembury

Proximal straight tubules were dissected and mounted in a chamber with their lumina occluded. The well-stirred bath could be 95% changed within 84 ms to set up osmotic gradients (delta Coi) across the peritubular cell aspect. Volume changes (less than or equal to 10 pl/mm) were estimated from continuous records of diameter changes (error less than 0.1 micrometers). delta Coi greater than or equal to 2-3 mosM could be discerned. delta Coi values from 10 to 44 mosM were used to evaluate Posc, the cell osmotic water permeability coefficient, and extrapolated to delta Coi = 0. Posc = 25.1 (+/- 2.3) X 10(-4) cm3.s-1.osM-1.cm2 tubular surface area-1. These values are lower than those reported for Pose, the transepithelial osmotic water permeability coefficient, and become lower if corrected for the real (infolded) peritubular cell surface area. Thus, for a given osmotic difference, transcellular water flow finds a higher resistance than paracellular water flow. Experiments were also performed with delta Coi greater than 100 mosM, but interpretation of these data is difficult because of the presence of volume regulatory phenomena and other undesirable effects.


1993 ◽  
Vol 123 (6) ◽  
pp. 1389-1402 ◽  
Author(s):  
J N Myers ◽  
I Tabas ◽  
N L Jones ◽  
F R Maxfield

beta-very low density lipoprotein (VLDL) is a large lipoprotein with multiple apoprotein E (apoE) molecules that bind to the LDL receptors on mouse macrophages. Even though they bind to the same receptor, the endocytic processing of beta-VLDL differs from low density lipoprotein (LDL). LDL is rapidly delivered to perinuclear lysosomes and degraded, but much of the beta-VLDL is retained in peripheral compartments for several minutes. We have investigated the properties of these peripheral compartments. Measurement of the pH was made using FITC-phosphatidylethanolamine incorporated into the beta-VLDL, and we found that the peripheral compartments were near neutral in pH. These peripheral, beta-VLDL containing compartments were poorly accessible to antibodies, but a low molecular weight fluorescence quencher (trypan blue) entered the compartments within a few seconds. Intermediate voltage EM of cells labeled with colloidal-gold-beta-VLDL revealed that the peripheral compartments are tubular, surface-connected invaginations. Kinetic studies with fluorescent beta-VLDL showed that the compartments become fully sealed with a half-time of 6 min, and the beta-VLDL is then delivered rapidly to perinuclear lysosomes. By monitoring fluorescence energy transfer between lipid analogs incorporated into the beta-VLDL, some processing of the lipoprotein in the peripheral tubular compartments is demonstrated. The novel mode of uptake of beta-VLDL may account for the high cholesterol ester accumulation induced by this lipoprotein.


Sign in / Sign up

Export Citation Format

Share Document