Thermo-Mechanical Vibration Analysis of Imperfect Inhomogeneous Beams Based on a Four-Variable Refined Shear Deformation Beam Theory Considering Neutral Surface Position

2019 ◽  
Vol 24 (3) ◽  
pp. 426-439
Author(s):  
Farzad Ebrahimi ◽  
Ali Jafari

In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of porous functionally graded (FG) beams by considering neutral surface position and different thermal loadings via a four-variable shear deformation refined beam theory. Four types of environmental conditions through the z-axis direction are supposed as: uniform (UTR), linear (LTR), nonlinear (NLTR) and sinusoidal (STR) temperature rises. Mechanical properties of porous FG beams are supposed to vary through the thickness direction and are modeled via the modified power-law. The modified power-law is formulated using the concept of even and uneven porosity distributions. Since the variation of pores along the thickness direction influences the mechanical properties, porosity plays a key role in the mechanical response of FG structures. The governing differential equations and related boundary conditions of porous FG beams are subjected to temperature field that is derived by Hamilton's principle based on a four-variable refined theory which verifies shear deformation regardless of any shear correction factor. The Navier-type solution procedure is used to achieve the natural frequencies of porous-FG beams supposed to various thermal loadings which satisfies the simply-simply boundary condition. A parametric study is led to carry out the effects of material graduation exponent, porosity volume fraction, different porosity distribution, and thermal effect on dimensionless frequencies of porous FG beams. It is concluded that these parameters play noticeable roles in the vibration behavior of imperfect FG beams. Presented numerical results can be applied as benchmarks for future designs of imperfect FG structures with porosity phases.

2013 ◽  
Vol 15 (5) ◽  
pp. 467-479 ◽  
Author(s):  
Mohammed Bouremana ◽  
Mohammed Sid Ahmed Houari ◽  
Abdelouahed Tounsi ◽  
Abdelhakim Kaci ◽  
El Abbas Adda Bedia

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zakaria Ibnorachid ◽  
Lhoucine Boutahar ◽  
Khalid EL Bikri ◽  
Rhali Benamar

In this paper, free vibrations of Porous Functionally Graded Beams (P-FGBs), resting on two-parameter elastic foundations, and exposed to three forms of thermal field, uniform, linear, and sinusoidal, are studied using a Refined Higher-order shear Deformation Theory. The present theory accounts for shear deformation by considering a constant transverse displacement and a higher-order variation of the axial displacement through the thickness of the beam. The stress-free boundary conditions are satisfied on the upper and lower surfaces of the beam without using any shear correction factor. The material properties are temperature-dependent and vary continuously through the depth direction of the beam, based on a modified power-law rule, in which two kinds of porosity distributions, uniform, and nonuniform, through the cross-section area of the beam, are considered. Hamilton’s principle is applied to obtain governing equations of motion, which are solved using a Navier-type analytical solution for simply supported P-FGB. Numerical examples are proposed and discussed in detail, to prove the effect of the thermal environment, the porosity distribution, and the influence of several parameters such as the power-law index, porosity volume fraction, slenderness ratio, and elastic foundation parameters on the critical buckling temperatures and the natural frequencies of the P-FGB.


2016 ◽  
Vol 2016 ◽  
pp. 1-16
Author(s):  
Ren Yongsheng ◽  
Du Chenggang ◽  
Shi Yuyan

The nonlinear free and forced vibration of the composite beams embedded with shape memory alloy (SMA) fibers are investigated based on first-order shear deformation beam theory and the von Kármán type nonlinear strain-displacement equation. A thermomechanical constitutive equation of SMA proposed by Brinson is used to calculate the recovery stress of the constrained SMA fibers. The equations of motion are derived by using Hamilton’s principle. The approximate solution is obtained for vibration analysis of the composite beams based on the Galerkin approach. The parametric study is carried out to display the effect of the actuation temperature, the volume fraction, the initial strain of SMA fibers, and the length-to-thickness ratio. The shear deformation is shown to have a significant contribution to nonlinear vibration behavior of the composite beams with SMA fibers.


2012 ◽  
Vol 12 (02) ◽  
pp. 311-335 ◽  
Author(s):  
X. Q. HE ◽  
L. LI ◽  
S. KITIPORNCHAI ◽  
C. M. WANG ◽  
H. P. ZHU

Based on an inextensional two-parameter analytical model for cylindrical shells, bi-stable analyses were carried out on laminated functionally graded material (FGM) shells with various layups of fibers. Properties of FGM shells are functionally graded in the thickness direction according to a volume fraction power law distribution. The effects of constituent volume fractions of FGM matrix are examined on the curvature and twist of laminated FGM shells. The results reveal that the optimum combination of constituents of FGM matrix can be obtained for the maximum twist of FGM shells with antisymmetric layups, which helps the design of deployable structures. The effects of Young's modulus of fibers and the symmetry of layups on bi-stable behaviors are also discussed in detail.


2017 ◽  
Vol 33 (6) ◽  
pp. 739-757 ◽  
Author(s):  
F. Ebrahimi ◽  
M. Hashemi

AbstractIn the present study, thermo-mechanical vibration behavior of non-uniform beams made of functionally graded (FG) porous material are investigated under different thermal loadings for the first time. It is observed that during the fabrication of functionally graded materials (FGMs) porosities and micro-voids can be occured inside the material, thus in this study vibration analysis of FG beams by considering the effect of these imperfections is performed. Material properties of the FG beam are assumed to be temperature-dependent and vary continuously through thickness direction according to a power-law scheme which is modified to approximate material properties for both even and uneven distributions of the porosities. Different thermal environmental conditions, including uniform, linear and non-linear temperature changes through the thickness direction are considered. The motion equations are derived based on the Euler-Bernoulli beam theory through Hamilton's principle and they are solved applying the differential transformation method (DTM). In order to show the accuracy of the present analysis, comparisons are made with previous researches and an excellent agreement is observed. The obtained results are presented for the thermo-mechanical vibration characteristics of the FG beams such as the influences of various temperature rises, gradient index, porosity volume fraction, taper ratio and the boundary conditions in detail.


Author(s):  
Zixuan Zhou ◽  
Xiuchang Huang ◽  
Hongxing Hua

A constrained variation modeling method for free vibration analysis of rotating double tapered functionally graded beams with different shear deformation beam theories is proposed in this paper. The material properties of the beam are supposed to continuously vary in the width direction with power-law exponent for different indexes. The mathematical formulation is developed based on the geometrically exact beam theory for each beam segment, the admissible functions denoting motion quantities are then expressed by a series of Chebyshev orthogonal polynomials. The governing equations are eventually derived using the constrained variational method to involve the continuity conditions of adjacent segments. Different shear deformation beam theories have been incorporated in the formulations, and the nonlinear effect of bending–stretching coupling vibration together with the Coriolis effect is taken into account. Comparison of dimensionless natural frequencies is performed with the existing literature to ensure the accuracy and reliability of the proposed method. Comparative discussions are performed on the vibration behaviors of the double tapered rotating functionally graded beam with first-order shear deformation beam theory and other higher-order shear deformation beam theories. The effect of material property graduation, power-law index, rotation speed, hub radius, slenderness ratio, and taper ratios is scrutinized via parametric studies, respectively.


2015 ◽  
Vol 69 (3) ◽  
pp. 683-691 ◽  
Author(s):  
Khelifa Zoubida ◽  
Tahar Hassaine Daouadji ◽  
Lazreg Hadji ◽  
Abdelouahed Tounsi ◽  
Adda Bedia El Abbes

Sign in / Sign up

Export Citation Format

Share Document