scholarly journals Density Functional Study on Benzene, Toluene, Ethylbenzene and Xylene Adsorptions on ZnO(100) Surface

Molekul ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 37 ◽  
Author(s):  
Nugraha Nugraha ◽  
Adhitya Gandaryus Saputro ◽  
Mohammad Kemal Agusta ◽  
Fiki Taufik Akbar ◽  
Aditya Dimas Pramudya

We study the interaction between benzene, toluene, ethylbenzene and xylene (BTEX) molecules with ZnO(100) surface by means of density functional theory-based calculations. We find that these interactions result in the physical adsorptions of BTEX gases with adsorption distances larger than 2 Å. These adsorptions are governed by the van der Waals interaction instead of the covalent interaction. We also find that the trend of the strength of BTX adsorptions on ZnO(100) surface  is in line with the experimental trend of sensitivity of ZnO material towards BTX gases (benzene < tolune < xylene). We explain this relation by using one of the sensing mechanism within the ionosorption model. By using this relation, we also predict that the response of ZnO towards ethylbenzene will be similar to the response towards toluene since these two molecules have similar adsorption energies on ZnO(100) surface. 

2015 ◽  
Vol 17 (35) ◽  
pp. 23207-23213 ◽  
Author(s):  
C. He ◽  
W. X. Zhang ◽  
T. Li ◽  
L. Zhao ◽  
X. G. Wang

The structural, electronic, and magnetic properties of monolayer MoS2 on decorated AlN nanosheets have been systematically investigated using density functional theory with van der Waals corrections.


2016 ◽  
Vol 18 (39) ◽  
pp. 27226-27231 ◽  
Author(s):  
Kieu My Bui ◽  
Van An Dinh ◽  
Susumu Okada ◽  
Takahisa Ohno

Based on density functional theory, we have systematically studied the crystal and electronic structures, and the diffusion mechanism of the NASICON-type solid electrolyte Na3Zr2Si2PO12.


2018 ◽  
Vol 786 ◽  
pp. 384-392 ◽  
Author(s):  
Hussein Y. Ammar

The structural and electronic properties of Li, Mg and Al deposited ZnO nanocages and their effects on the adsorption of formaldehyde molecule have been investigated using the density functional theory (DFT) computations. To understand the behavior of the adsorbed CH2O molecule on the ZnO nanocage, results of DFT calculations of the M-deposited nanocages (M=Li, Mg and Al), as well as complex systems consisting of the adsorbed CH2O molecule on M-deposited ZnO nanocage were reported. The results presented include adsorption energies, bond lengths, electronic configurations, density of states and molecular orbitals. It was found that, the most energetically stable adsorption configurations of CH2O molecule on the bare ZnO leads to 12% dilation in C=O bond length of CH2O and 14% decrease in HOMO-LUMO gap of ZnO cluster. The most energetically stable adsorption configurations of CH2O molecule on Li, Mg and Al-deposited ZnO lead to 4%, 4% and 11% dilation in C=O bond length of CH2O and-0.66, -45 and , +66% change in HOMO-LUMO gap of ZnO nanocages, respectively. The interaction between CH2O with bare ZnO and M-deposited ZnO nanocages is attributed to charge transfer mechanism. These results may be meaningful for CH2O degradation and detection.


2013 ◽  
Vol 652-654 ◽  
pp. 815-818
Author(s):  
Yan Wei ◽  
Jia Xin Xu ◽  
Xiao Mei Yuan ◽  
Xiao Hui Zheng

We have studied the structures and electronic properties of PdCn (n=2-12) using the density functional theory in this paper. Though calculating, we found that the linear isomers are most stable for PdCn(n=2-9) clusters. N=10 is turning point, and the bicyclical structure is most stable for PdC10 cluster. Cyclic structures have the lowest energy for PdC11 and PdC12 clusters.


Sign in / Sign up

Export Citation Format

Share Document