scholarly journals Sonar for Environmental Monitoring: Construction of a Multifunctional Active Acoustic Platform Applied for Marine Renewables

Author(s):  
Francisco Francisco ◽  
Jan Sundberg

Marine renewable energy is emerging as one of the fast-growing industry in the last decades, as modern society pushes for technologies that can convert energy contained from winds, waves, tides and stream flows. The implementation of renewable energy technologies impose high demands on both structural and environmental engineering, as the energy converters have to work under extreme conditions where parameters such as sea-bottom configuration, water transparency and depth, sea-states and prevailing winds are harsh. Constant monitoring of the marine environment is crucial in order to keep this sector reliable. Active acoustics is becoming a standard tool to collect multi-dimensional data from physical, geological and biological properties of the marine environment. The Div. of Electricity of Uppsala University have been developing an environmental monitoring platform based on sonar systems. This platform aims to monitor the installation, operation and decommissioning of marine renewable energy converters. The focus will be given the observations of behaviors of marine animals in vicinity of energy converters but also structural inspection and monitoring of MRETs. This paper describes how this multifunctional environmental monitoring platform come to existence from the design to the deployment phase.

Author(s):  
Francisco Gemo Albino Francisco ◽  
Jan Sundberg

Marine renewable energy is emerging as one of the fast-growing industry in the last decades, as modern society pushes for technologies that can convert energy contained from winds, waves, tides and stream flows. The implementation of renewable energy technologies impose high demands on both structural and environmental engineering, as the energy converters have to work under extreme conditions where parameters such as sea-bottom configuration, water transparency and depth, sea-states and prevailing winds are harsh. Constant monitoring of the marine environment is crucial in order to keep this sector reliable. Active acoustics is becoming a standard tool to collect multi-dimensional data from physical, geological and biological properties of the marine environment. The Div. of Electricity of Uppsala University have been developing an environmental monitoring platform based on sonar (Sound Navigation And Raging) systems. This platform aims to monitor the installation, operation and decommissioning of marine renewable energy converters. The focus will be given the observations of behaviours of marine animals in vicinity of energy converters but also structural inspection and monitoring of MRETs. This paper describes how this multifunctional environmental monitoring platform come to existence from the design to the deployment phase.


2014 ◽  
Author(s):  
B. L. Polagye ◽  
A. E. Copping ◽  
J. Brown-Saracino ◽  
R. Suryan ◽  
S. Kramer ◽  
...  

2020 ◽  
Vol 8 (11) ◽  
pp. 879
Author(s):  
Andrea E. Copping ◽  
Lenaïg G. Hemery ◽  
Dorian M. Overhus ◽  
Lysel Garavelli ◽  
Mikaela C. Freeman ◽  
...  

Marine renewable energy (MRE) harnesses energy from the ocean and provides a low-carbon sustainable energy source for national grids and remote uses. The international MRE industry is in the early stages of development, focused largely on tidal and riverine turbines, and wave energy converters (WECs), to harness energy from tides, rivers, and waves, respectively. Although MRE supports climate change mitigation, there are concerns that MRE devices and systems could affect portions of the marine and river environments. The greatest concern for tidal and river turbines is the potential for animals to be injured or killed by collision with rotating blades. Other risks associated with MRE device operation include the potential for turbines and WECs to cause disruption from underwater noise emissions, generation of electromagnetic fields, changes in benthic and pelagic habitats, changes in oceanographic processes, and entanglement of large marine animals. The accumulated knowledge of interactions of MRE devices with animals and habitats to date is summarized here, along with a discussion of preferred management methods for encouraging MRE development in an environmentally responsible manner. As there are few devices in the water, understanding is gained largely from examining one to three MRE devices. This information indicates that there will be no significant effects on marine animals and habitats due to underwater noise from MRE devices or emissions of electromagnetic fields from cables, nor changes in benthic and pelagic habitats, or oceanographic systems. Ongoing research to understand potential collision risk of animals with turbine blades still shows significant uncertainty. There has been no significant field research undertaken on entanglement of large animals with mooring lines and cables associated with MRE devices.


2019 ◽  
Vol 7 (2) ◽  
pp. 22 ◽  
Author(s):  
Francisco Francisco ◽  
Jan Sundberg

Techniques for marine monitoring have been greatly evolved over the past decades, making the acquisition of environmental data safer, more reliable and more efficient. On the other hand, the marine renewable energy sector has introduced dissimilar ways of exploring the oceans. Marine energy is mostly harvested in murky and high energetic places where conventional data acquisition techniques are impractical. This new frontier on marine operations brings the need for finding new techniques for environmental data acquisition, processing and analysis. Modern sonar systems, operating at high frequencies, can acquire detailed images of the underwater environment. Variables such as occurrence, size, class and behavior of a variety of aquatic species of fish, birds, and mammals that coexist within marine energy sites can be monitored using imaging sonar systems. Although sonar images can provide high levels of detail, in most of the cases they are still difficult to decipher. In order to facilitate the classification of targets using sonar images, this study introduces a framework of extracting visual features of marine animals that would serve as unique signatures. The acoustic visibility measure (AVM) is here introduced as technique of identification and classification of targets by comparing the observed size with a standard value. This information can be used to instruct algorithms and protocols in order to automate the identification and classification of underwater targets using imaging sonar systems. Using image processing algorithms embedded in Proviwer4 and FIJI software, this study found that acoustic images can be effectively used to classify cod, harbour and grey seals, and orcas through their size, shape and swimming behavior. The sonar images showed that cod occurred as bright, 0.9 m long, ellipsoidal targets shoaling in groups. Harbour seals occurred as bright torpedo-like fast moving targets, whereas grey seals occurred as bulky-ellipsoidal targets with serpentine movements. Orca or larger marine mammals occurred with relatively low visibility on the acoustic images compared to their body size, which measured between 4 m and 7 m. This framework provide a new window of performing qualitative and quantitative observations of underwater targets, and with further improvements, this method can be useful for environmental studies within marine renewable energy farms and for other purposes.


2020 ◽  
Vol 8 (3) ◽  
pp. 172 ◽  
Author(s):  
Andrea E. Copping ◽  
Mikaela C. Freeman ◽  
Alicia M. Gorton ◽  
Lenaïg G. Hemery

Marine renewable energy (MRE) is under development in many coastal nations, adding to the portfolio of low carbon energy sources that power national electricity grids as well as off-grid uses in isolated areas and at sea. Progress in establishing the MRE industry, largely wave and tidal energy, has been slowed in part due to uncertainty about environmental risks of these devices, including harm to marine animals and habitats, and the associated concerns of regulators and stakeholders. A process for risk retirement was developed to organize and apply knowledge in a strategic manner that considered whether specific environmental effects are likely to cause harm. The risk retirement process was tested against two key MRE stressors: effects of underwater noise from operational MRE devices on marine animals, and effects of electromagnetic fields from MRE electrical export cables on marine animals. The effects of installation of MRE devices were not accounted for in this analysis. Applying the risk retirement process could decrease the need for costly investigations of each potential effect at every new MRE project site and help move the industry beyond current barriers.


2011 ◽  
Vol 54 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Mark A. Shields ◽  
David K. Woolf ◽  
Eric P.M. Grist ◽  
Sandy A. Kerr ◽  
A.C. Jackson ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 297
Author(s):  
Tiago Fazeres-Ferradosa ◽  
João Chambel ◽  
Francisco Taveira-Pinto ◽  
Paulo Rosa-Santos ◽  
Francisco V. C. Taveira Pinto ◽  
...  

The offshore wind is the sector of marine renewable energy with the highest commercial development at present. The margin to optimise offshore wind foundations is considerable, thus attracting both the scientific and the industrial community. Due to the complexity of the marine environment, the foundation of an offshore wind turbine represents a considerable portion of the overall investment. An important part of the foundation’s costs relates to the scour protections, which prevent scour effects that can lead the structure to reach the ultimate and service limit states. Presently, the advances in scour protections design and its optimisation for marine environments face many challenges, and the latest findings are often bounded by stakeholder’s strict confidential policies. Therefore, this paper provides a broad overview of the latest improvements acquired on this topic, which would otherwise be difficult to obtain by the scientific and general professional community. In addition, this paper summarises the key challenges and recent advances related to offshore wind turbine scour protections. Knowledge gaps, recent findings and prospective research goals are critically analysed, including the study of potential synergies with other marine renewable energy technologies, as wave and tidal energy. This research shows that scour protections are a field of study quite challenging and still with numerous questions to be answered. Thus, optimisation of scour protections in the marine environment represents a meaningful opportunity to further increase the competitiveness of marine renewable energies.


Sign in / Sign up

Export Citation Format

Share Document