scholarly journals Synthesis and Fluorescent Properties of Novel Mono- and Di-Substituted 1,8-Naphthalimide Derivatives at the C-4 Position

Author(s):  
Ying Fu ◽  
Xiao-Xiao Pang ◽  
Kui Wang ◽  
Zhi-Qiang Wang ◽  
Guan-Yu Li ◽  
...  

A series of novel N-n-butyl-1,8-naphthalimide derivatives were synthesized via a three-step reaction involving nucleophilic substitution and acylation. All of the compounds were characterized by IR, 1H NMR, 13C NMR, MS, and elemental analysis, and the crystal structure of N-n-butyl-4-[N’,N’-bis(2`,4`-dichlorobenzoyl)ethylamino]-1,8-naphthalimide was determined. The π-π stacking interactions and hydrogen bonds between the two molecular core planes (naphthalimide ring) and the van der Waals forces between the flexible n-butyl groups resulted in a 3D long-chain structure. The UV-vis and fluorescence properties of the title compounds were investigated. The results indicated that the monosubstituted 1,8-naphthalimide derivatives bearing an electron-donating group on the benzene ring or a structure with a larger conjugative effect exhibited enhanced fluorescence properties.

2014 ◽  
Vol 70 (10) ◽  
pp. o1130-o1130 ◽  
Author(s):  
Wataru Furukawa ◽  
Munenori Takehara ◽  
Yoshinori Inoue ◽  
Chitoshi Kitamura

In an attempt to brominate 1,4-dipropoxy-9,10-anthraquinone, a mixture of products, including the title compound, C14H7BrO4, was obtained. The molecule is essentially planar (r.m.s. deviation = 0.029 Å) and two intramolecular O—H...O hydrogen bonds occur. In the crystal, the molecules are linked by weak C—H...O hydrogen bonds, Br...O contacts [3.240 (5) Å], and π–π stacking interactions [shortest centroid–centroid separation = 3.562 (4) Å], generating a three-dimensional network.


2012 ◽  
Vol 68 (6) ◽  
pp. o1884-o1884 ◽  
Author(s):  
Ísmail Çelik ◽  
Mehmet Akkurt ◽  
Makbule Yilmaz ◽  
Ahmet Tutar ◽  
Ramazan Erenler ◽  
...  

In the title compound, C11H10Br2O2, the cyclopentene ring fused to the benzene ring adopts an envelope conformation, with the C atom attached to the Br atom as the flap. The crystal structure does not exhibit any classical hydrogen bonds. The molecular packing is stabilized by van der Waals forces and π–π stacking interactions with a centroid–centroid distance of 3.811 (4) Å.


2014 ◽  
Vol 70 (11) ◽  
pp. m365-m366 ◽  
Author(s):  
Junshan Sun

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2]·2H2O, the CuIIion has a square-pyramidal coordination sphere. The basal plane consists of two N atoms [Cu—N = 2.008 (3) and 2.032 (3) Å] from the phenanthroline ligand, and of two carboxylate O atoms [Cu—O = 1.942 (3) and 1.948 (3) Å] from two 2,3,4,5-tetrafluorobenzoate anions. Another 2,3,4,5-tetrafluorobenzoate anion provides the apical carboxylate O atom [Cu—O = 2.262 (3) Å] and bridges two CuIIions into a binuclear centrosymmetric dimer. Intramolecular π–π interactions between one of the tetrafluorobenzene rings and the middle of the phenenanthroline rings [3.617 (3) Å] stabilize the molecular configuration. O—H...O hydrogen bonds between the lattice water molecules and the unbound carboxylate O atoms of the metal complexes leads to the formation of a chain structure parallel to [100].


2015 ◽  
Vol 71 (12) ◽  
pp. o953-o954
Author(s):  
Badma N. Mankaev ◽  
Kirill V. Zaitsev ◽  
Sergey S. Karlov ◽  
Mikhail P. Egorov ◽  
Andrei V. Churakov

The asymmetric unit in the structure of the title compound, C25H22NO2+·Br−·0.5CH2Cl2·0.5H2O, comprises two pseudosymmetry-related cations, two bromide anions, a dichloromethane molecule and a water molecule of solvation. The two independent cations are conformationally similar with the comparative dihedral angles between the central pyridine ring and the three benzene substituent rings being 3.0 (2), 36.4 (1) and 24.2 (1)°, and 3.7 (2), 36.5 (1) and 24.8 (1)°, respectively. In the crystal, the cations, anions and water molecules are linked through O—H...O and O—H...Br hydrogen bonds, forming an insular unit. Within the cations there are also intramolecular N—H...O hydrogen bonds. Adjacent centrosymmetrically related aggregates are linked by π–π stacking interactions between the pyridine ring and a benzene ring in both cations [ring-centroid separations = 3.525 (3) and 3.668 (3) Å], forming chains extending across theacdiagonal. Voids between these chains are filled by dichloromethane molecules.


2012 ◽  
Vol 68 (4) ◽  
pp. o1185-o1186
Author(s):  
Kamini Kapoor ◽  
Vivek K. Gupta ◽  
Satya Paul ◽  
Seema Sahi ◽  
Rajni Kant

In the title 1:1 co-crystal, C10H7BrN4S·C7H5BrO2, the triazolothiadiazole system is approximately planar [with a maximum deviation of 0.030 (4) Å] and forms a dihedral angle of 8.6 (1)° with the bromophenyl ring. In the carboxylic acid molecule, the carboxyl group is rotated by 6.4 (3)° out of the benzene ring plane. The crystal structure features O—H...N and C—H...O hydrogen bonds, π–π stacking interactions [centroid–centroid distances = 3.713 (2), 3.670 (2) and 3.859 (3) Å] and short S...N [2.883 (4) Å] contacts.


2014 ◽  
Vol 70 (7) ◽  
pp. o806-o806 ◽  
Author(s):  
Md. Serajul Haque Faizi ◽  
Ashraf Mashrai ◽  
M. Shahid ◽  
Musheer Ahmad

The title compound, C16H14N4, is non-planar with dihedral angles between the planes of the imidazole and phenylenediamine rings of 30.66 (4)° and between the planes of the phenylenediamine andN-phenyl rings of 56.63 (7)°. In the crystal, molecules are connected by N—H...N hydrogen bonds, generating a chain extending along theb-axis direction. The crystal structure is also stabilized by C—H...π interactions betweenN-phenyl and imidazole rings and slipped π–π stacking interactions between imidazole rings [centroid–centroid distance = 3.516 (4) Å] giving an overall two-dimensional layered structure lying parallel to (010).


2000 ◽  
Vol 57 (1) ◽  
pp. m25-m27 ◽  
Author(s):  
Miao Du ◽  
Xian-He Bu ◽  
Lin-Hong Weng ◽  
Xue-Bing Leng ◽  
Ya-Mei Guo

In the crystal structure of the title complex, [Cu(C10H9N3)2](ClO4)2, the CuIIcenter is four-coordinated by the nitrogen donors of the pyridine rings of the ligand, bis(2-pyridyl)amine. The crystal structure reveals that the CuN4coordination sphere has a distorted tetrahedral coordination geometry with a crystallographicC2axis through the CuIIcenter. The perchlorate anions link the complex cations to form a chain structure through C—H...O close contacts and N—H...O hydrogen bonds.


1999 ◽  
Vol 54 (6) ◽  
pp. 747-750 ◽  
Author(s):  
Joachim Pickardt ◽  
Pirka Wischlinski

Crystals o f the complex [K (benzo-18-crown-6][Zn(CN)3] H2O were obtained from a solution o f Zn(CN)2, KCN, and benzo-18-crown-6 in water/methanol. The compound crystallizes in the triclinic space group PI (no. 2),: Z = 2, a = 818,6(5), b = 1236,7(8), c = 1359,6(6) pm, a = 67,02(4), β = 87,38(4), 7 = 75,46(5). Each Zn atom is bonded to one bridging cyanide ion to give chains -Zn(CN)Zn -, and to two terminal CN groups. The N atom of one of the terminal CN groups interacts with a potassium ion o f the [K (benzo-18-crown-6)]+ unit. The coordination spheres of the K ions are completed by water molecules, which in turn form hydrogen bonds to N atoms of terminal CN groups of neighbouring chains, whereby puckered sheets are formed


2006 ◽  
Vol 62 (4) ◽  
pp. o1529-o1531 ◽  
Author(s):  
Li-Ping Zhang ◽  
Long-Guan Zhu

In the crystal structure of the title organic proton-transfer complex, 2C12H11N2 +·C7H4O5S2−·3H2O, the cations form one-dimensional chains via intermolecular N—H...N hydrogen bonds and these chains, in turn, form a two-dimensional network through π–π stacking interactions. In addition, the anions and water molecules are connected into a two-dimensional hydrogen-bonded network through intermolecular O—H...O hydrogen bonds. The two motifs result in sheets of cations and anions stacked alternately.


Author(s):  
Haliwana B. V. Sowmya ◽  
Tholappanavara H. Suresha Kumara ◽  
Jerry P. Jasinski ◽  
Sean P. Millikan ◽  
Hemmige S. Yathirajan ◽  
...  

In the molecule of 3-chloro-2-(4-methylphenyl)-2H-pyrazolo[3,4-b]quinoline, C17H12ClN3, (I), the dihedral angle between the planes of the pyrazole ring and the methylated phenyl ring is 54.25 (9)°. The bond distances in the fused tricyclic system provide evidence for 10-π delocalization in the pyrazolopyridine portion of the molecule, with diene character in the fused carbocyclic ring. In the crystal, molecules of (I) are linked by two independent C—H...N hydrogen bonds, forming sheets containing centrosymmetricR22(16) andR64(28) rings, and these sheets are all linked together by π–π stacking interactions with a ring-centroid separation of 3.5891 (9) Å.


Sign in / Sign up

Export Citation Format

Share Document