scholarly journals Conformable Laplace Transform of Fractional Differential Equations

Author(s):  
Fernando S. Silva ◽  
Davidson M. Moreira ◽  
Marcelo A. Moret

In this paper we use the conformable fractional derivative to discuss some fractional linear differential equations with constant coefficients. By applying some similar arguments to the theory of ordinary differential equations, we establish a sufficient condition to guarantee the reliability of solving constant coefficient fractional differential equations by the conformable Laplace transform method. Finally, we analyze the analytical solution for a class of fractional models associated with Logistic model, Von Foerster model and Bertalanffy model is presented graphically for various fractional orders and solution of corresponding classical model is recovered as a particular case.

Axioms ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 55 ◽  
Author(s):  
Fernando Silva ◽  
Davidson Moreira ◽  
Marcelo Moret

In this paper, we use the conformable fractional derivative to discuss some fractional linear differential equations with constant coefficients. By applying some similar arguments to the theory of ordinary differential equations, we establish a sufficient condition to guarantee the reliability of solving constant coefficient fractional differential equations by the conformable Laplace transform method. Finally, the analytical solution for a class of fractional models associated with the logistic model, the von Foerster model and the Bertalanffy model is presented graphically for various fractional orders. The solution of the corresponding classical model is recovered as a particular case.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668335
Author(s):  
Adem Kılıçman ◽  
Wasan Ajeel Ahmood

The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.


2021 ◽  
Vol 5 (3) ◽  
pp. 111
Author(s):  
Samaneh Soradi-Zeid ◽  
Mehdi Mesrizadeh ◽  
Carlo Cattani

This paper introduces an efficient numerical scheme for solving a significant class of fractional differential equations. The major contributions made in this paper apply a direct approach based on a combination of time discretization and the Laplace transform method to transcribe the fractional differential problem under study into a dynamic linear equations system. The resulting problem is then solved by employing the numerical method of the quadrature rule, which is also a well-developed numerical method. The present numerical scheme, which is based on the numerical inversion of Laplace transform and equal-width quadrature rule is robust and efficient. Some numerical experiments are carried out to evaluate the performance and effectiveness of the suggested framework.


2020 ◽  
Vol 26 (1) ◽  
pp. 35-55
Author(s):  
Abdelkader Kehaili ◽  
Ali Hakem ◽  
Abdelkader Benali

In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the time-fractional differential equations. Keywords: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform method, hyperbolic-like equation, Laplace transform, parabolic-like equation.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1137
Author(s):  
Emilio Defez ◽  
Michael M. Tung ◽  
Benito M. Chen-Charpentier ◽  
José M. Alonso

Matrix exponentials are widely used to efficiently tackle systems of linear differential equations. To be able to solve systems of fractional differential equations, the Caputo matrix exponential of the index α > 0 was introduced. It generalizes and adapts the conventional matrix exponential to systems of fractional differential equations with constant coefficients. This paper analyzes the most significant properties of the Caputo matrix exponential, in particular those related to its inverse. Several numerical test examples are discussed throughout this exposition in order to outline our approach. Moreover, we demonstrate that the inverse of a Caputo matrix exponential in general is not another Caputo matrix exponential.


Author(s):  
Masataka Fukunaga

Abstract The Laplace transform method is one of the powerful tools in studying the frac- tional differential equations (FDEs). In this paper, it is shown that the Heaviside expansion method for integer order differential equations is also applicable to the Laplace transforms of multi-term Caputo fractional differential equations (FDEs) of zero initial conditions if the orders of Caputo derivatives are integer multiples of a common real number. The particular solution of a linear multi-term Caputo FDE is obtained by its Laplace transform and the Heaviside expansion method. A Caputo FDE of non zero initial conditions is transformed to an Caputo FDE of zero initial conditions by an appropriate change of variables. In the latter, the terms originated from the initial conditions appear as nonhomogeneous terms. Thus, the Caputo FDE of nonzero initial conditions is obtained as the particular solutions to the equivalent Caputo FDE of zero initial conditions. The solutions of a linear multi-term Caputo FDEs of nonzero initial conditions are expressed through the two parameter Mittag-Leffler functions.


Author(s):  
J. Vanterler da C. Sousa ◽  
Rubens F. Camargo ◽  
E. Capelas de Oliveira ◽  
Gastáo S. F. Frederico

Author(s):  
Najma Ahmed ◽  
Dumitru Vieru ◽  
Fiazud Din Zaman

A generalized mathematical model of the breast and ovarian cancer is developed by considering the fractional differential equations with Caputo time-fractional derivatives. The use of the fractional model shows that the time-evolution of the proliferating cell mass, the quiescent cell mass, and the proliferative function are significantly influenced by their history. Even if the classical model, based on the derivative of integer order has been studied in many papers, its analytical solutions are presented in order to make the comparison between the classical model and the fractional model. Using the finite difference method, numerical schemes to the Caputo derivative operator and Riemann-Liouville fractional integral operator are obtained. Numerical solutions to the fractional differential equations of the generalized mathematical model are determined for the chemotherapy scheme based on the function of "on-off" type. Numerical results, obtained with the Mathcad software, are discussed and presented in graphical illustrations. The presence of the fractional order of the time-derivative as a parameter of solutions gives important information regarding the proliferative function, therefore, could give the possible rules for more efficient chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document