scholarly journals Online Real-Time Monitoring System through Using Adaptive Angular-Velocity VKF Order Tracking

Author(s):  
Ting-Chi Yeh ◽  
Min-Chun Pan ◽  
Duc Do Le

When a rotary machine is running, from which the acquired vibro-acoustic signals enable to reveal its operation status and health condition. The study proposed a DSP-based adaptive angular-velocity Vold-Kalman filtering order tracking (AV2KF_OT) algorithm with an online real-time nature for signal interpretation and machine condition monitoring. Theoretical derivation and numerical implementation of computation schemes are briefly introduced. An online real-time monitoring system based on the AV2KF_OT algorithm, which was implemented through both a digital signal processor and a user interface coded by using LabVIEW, was developed. Two experimental tasks were applied to justify the proposed technique, including (i) the detection of startup on the fluid-induced whirl performed through a journal-bearing rotor rig, and (ii) the separation of close orders from the measured signals of a multifunction transmission-element ball-bearing bench.

Author(s):  
Ting-Chi Yeh ◽  
Min-Chun Pan

When rotary machines are running, acousto-mechanical signals acquired from the machines are able to reveal their operation status and machine conditions. Mechanical systems under periodic loading due to rotary operation usually respond in measurements with a superposition of sinusoids whose frequencies are integer (or fractional integer) multiples of the reference shaft speed. In this study we built an online real-time machine condition monitoring system based on the adaptive angular-velocity Vold-Kalman filtering order tracking (AV2KF_OT) algorithm, which was implemented through a DSP chip module and a user interface coded by the LabVIEW®. This paper briefly introduces the theoretical derivation and numerical implementation of computation scheme. Experimental works justify the effectiveness of applying the developed online real-time condition monitoring system. They are the detection of startup on the fluid-induced instability, whirl, performed by using a journal-bearing rotor test rig.


2009 ◽  
Vol 413-414 ◽  
pp. 463-469
Author(s):  
L.R. Xia ◽  
Niao Qing Hu ◽  
G.J. Qin

Turbopump is a high-fault-rate component in Liquid Rocket Engine (LRE). The research on real-time process monitoring technology and system for turbopump is vital to increase the reliability and safety of LRE. In this paper, three real-time process monitoring algorithms for turbopump were studied firstly, on the basis of monitoring parameters selection and multiple domain feature extraction. Then, the real-time monitoring system realized by means of PXI (PCI eXtensions for Instrumentation) controller was introduced. And, aiming at the shortage of the previous system, the real-time process monitoring system based on DSP (Digital Signal Processor) for turbopump was studied to realize higher computing speed, which could conduce to extract multiple domain features and run manifold real-time monitoring algorithms. The new system could also satisfy the small-sized requirement in engine flying state.


2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

2011 ◽  
Vol 13 (4) ◽  
pp. 562-570 ◽  
Author(s):  
Pingxin WEI ◽  
Chenggang LI ◽  
Feng XU ◽  
Xiaochun SHI

1989 ◽  
Author(s):  
Foy E. Ferguson ◽  
Michael W. Ellzy ◽  
Joseph W. Lovrich ◽  
Theodore L. Strozyk ◽  
Jr

Sign in / Sign up

Export Citation Format

Share Document