scholarly journals Experimental and Theoretical Realization of Zenneck Wave-based Non-Radiative, Non-Coupled Wireless Power Transmission

Author(s):  
Sai Kiran Oruganti ◽  
Jagannath Malik ◽  
Jongwon Lee ◽  
Woojin Park ◽  
Bonyoung Lee ◽  
...  

A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to deliver electrical power to devices where a physical wiring proved to be unfeasible. However, existing approaches are neither scalable nor efficient when multiple devices are involved, as they are restricted by factors like coupling and external environments. Zenneck waves are excited at interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power by exciting non-radiative waves over metal surfaces to multiple loads. Our modeling and simulation using Maxwell’s equation with proper boundary conditions shows Zenneck type behavior for the excited waves and are in excellent agreement with experimental results. In conclusion, we physically realize a radically different power transfer system, based on a wave, whose existence has been fiercely debated for over a century.

Author(s):  
Sai Kiran Oruganti ◽  
Jagannath Malik ◽  
Jongwon Lee ◽  
Woojin Park ◽  
Bonyoung Lee ◽  
...  

A decade ago, non-radiative wireless power transmission reemerged a promising alternative to deliver electrical power to devices where a physical wiring proved to be unfeasible. However, conventional coupling-based approaches are neither scalable nor efficient when multiple devices are involved, as they are restricted by factors like coupling and external environments. Zenneck waves are excited at interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power by exciting non-radiative waves over metal surfaces to multiple loads.Our modeling and simulation using Maxwells equation with proper boundary conditions shows Zenneck type behavior for the excited waves and are in excellent agreement with experimental results. In conclusion, we physically realize a radically different power transfer system, based on a wave, whose existence has been fiercely debated for over a century.


Author(s):  
Askin Erdem Gundogdu ◽  
Erkan Afacan

There has been great interest in wireless power transmission since 2007 when a novel approach was presented by a group of scientists at MIT. With this new technique, power transmission range is possible for a couple of meters with high efficiency; however, to be able to use this technique in our lives with high efficiency and long transfer range, small structured devices and new design techniques are strongly required. In this chapter, the investigation on supplying energy by sweeping was presented. The experimental results claim that energy could be supplied to multiple devices almost at the same time. If the range of chosen frequency increases, the number of devices could be increased as well, considering slight energy efficiency loss in the transfer system. The authors hope that the proposed technique gives inspiration to the designers and to the market.


Author(s):  
S.R.A. Bolonne ◽  
A.K.K. Chanaka ◽  
G.C. Jayawardhana ◽  
I.H.T.D. Lionel ◽  
D.P. Chandima

2011 ◽  
Vol E94-B (11) ◽  
pp. 3172-3174 ◽  
Author(s):  
Takashi MARUYAMA ◽  
Tatsuya SHIMIZU ◽  
Mamoru AKIMOTO ◽  
Kazuki MARUTA

Sign in / Sign up

Export Citation Format

Share Document