Integrated real-time flood forecasting and inundation analysis in small-medium streams

Author(s):  
Byunghyun Kim ◽  
Seung-Yong Choi ◽  
Kun-Yeun Han

This study presents the application of an adaptive neuro-fuzzy inference system (ANFIS) and one dimensional (1-D) and two dimensional (2-D) hydrodynamic models to improve the problems of hydrological models currently used for flood forecasting in small-medium streams of South Korea. The optimal combination of input variables (e.g., rainfall and water level) in ANFIS was selected based on a statistical analysis of the observed and forecasted values. Two membership functions (MFs) and two ANFIS rules were determined by the subtractive clustering (SC) approach in the processes of training and checking. The developed ANFIS was applied to Jungrang Stream and water levels for six lead times (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 hour) were forecasted. Based on point forecasted water levels by ANFIS, 1-D section flood forecast and 2-D spatial inundation analysis were carried out. This study demonstrated that the proposed methodology can forecast flooding based only on observed data without abundant physical, and can be performed in real time by integrating point- and section flood forecasting and spatial inundation analysis.

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 919 ◽  
Author(s):  
Byunghyun Kim ◽  
Seng Yong Choi ◽  
Kun-Yeun Han

This study presents the application of an adaptive neuro-fuzzy inference system (ANFIS) and one dimensional (1-D) and two dimensional (2-D) hydrodynamic models to improve the problems of hydrological models currently used for flood forecasting in small–medium streams of South Korea. The optimal combination of input variables (e.g., rainfall and water level) in ANFIS was selected based on a statistical analysis of the observed and forecasted values. Two membership functions (MFs) and two ANFIS rules were determined by the subtractive clustering (SC) approach in the processes of training and checking. The developed ANFIS was applied to Jungrang Stream and water levels for six lead times (0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 hour) were forecasted. Based on point forecasted water levels by ANFIS, 1-D section flood forecast and 2-D spatial inundation analysis were carried out. This study demonstrated that the proposed methodology can forecast flooding based only on observed rainfall and water level without extensive physical and topographic data, and can be performed in real-time by integrating point- and section flood forecasting and spatial inundation analysis.


2014 ◽  
Vol 71 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Mawuli Dzakpasu ◽  
Miklas Scholz ◽  
Valerie McCarthy ◽  
Siobhán Jordan ◽  
Abdulkadir Sani

Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.


2016 ◽  
Vol 5 (4) ◽  
pp. 64-82 ◽  
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen I. Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 6510-6518 ◽  
Author(s):  
Shengyou Xu ◽  
Xin Yang ◽  
Minyou Chen ◽  
Wei Lai ◽  
Yueyue Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document