scholarly journals Metal Cutting Tool Position Control Using Static Output Feedback and Full State Feedback H2 Controllers

Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Roman Jirma

In this paper, a metal cutting machine position control have been designed and simulated using Matlab/Simulink Toolbox successfully. The open loop response of the system analysis shows that the system needs performance improvement. Static output feedback and full state feedback H2 controllers have been used to increase the performance of the system. Comparison of the metal cutting machine position using static output feedback and full state feedback H2 controllers have been done to track a set point position using step and sine wave input signals and a promising results have been analyzed.

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Emmanouil Spyrakos-Papastavridis ◽  
Jian S. Dai

Abstract This paper attempts to address the quandary of flexible-joint humanoid balancing performance augmentation, via the introduction of the Full-State Feedback Variable Impedance Control (FSFVIC), and Model-Free Compliant Floating-base VIC (MCFVIC) schemes. In comparison to rigid-joint humanoid robots, efficient balancing control of compliant bipeds, powered by Series Elastic Actuators (or harmonic drives), requires the design of more sophisticated controllers encapsulating both the motor and underactuated link dynamics. It has been demonstrated that Variable Impedance Control (VIC) can improve robotic interaction performance, albeit by introducing energy-injecting elements that may jeopardize closed-loop stability. To this end, the novel FSFVIC and MCFVIC schemes are proposed, which amalgamate both collocated and non-collocated feedback gains, with power-shaping signals that are capable of preserving the system's stability/passivity during VIC. The FSFVIC and MCFVIC stably modulate the system's collocated state gains to augment balancing performance, in addition to the non-collocated state gains that dictate the position control accuracy. Utilization of arbitrarily low-impedance gains is permitted by both the FSFVIC and MCFVIC schemes propounded herein. An array of experiments involving the COmpliant huMANoid reveals that significant balancing performance amelioration is achievable through online modulation of the full-state feedback gains (VIC), as compared to utilization of invariant impedance control.


2011 ◽  
Vol 130-134 ◽  
pp. 2876-2880
Author(s):  
Qiang He

Conventional single closed-loop system of DC motor with speed-feedback has poor performance when some stochastic disturbances take place. To handle this shortcoming, the control system with full-state feedback and integral output feedback of DC motor is proposed. The state-space model of the full-state feedback of DC motors is established. The feedback gains of the control system are optimized by Particle Swarm Optimization algorithms based the simulation model. The simulation results show that the control system with full-state feedback of DC motors has better dynamic performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Aristotle G. Yannakoudakis

We present a constructive solution to the problem of full output feedback equivalence, of linear, minimal, time-invariant systems. The equivalence relation on the set of systems is transformed to another on the set of invertible block Bezout/Hankel matrices using the isotropy subgroups of the full state feedback group and the full output injection group. The transformation achieving equivalence is calculated solving linear systems of equations. We give a polynomial version of the results proving that two systems are full output feedback equivalent, if and only if they have the same family of generalized Bezoutians. We present a new set of output feedback invariant polynomials that generalize the breakaway polynomial of scalar systems.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 756 ◽  
Author(s):  
Li Li ◽  
Fucheng Liao

We consider the problems of state feedback and static output feedback preview controller (PC) for uncertain discrete-time multiple-input multiple output (MIMO) systems based on the parameter-dependent Lyapunov function and the linear matrix inequality (LMI) technique in this paper. First, for each component of a reference signal, an augmented error system (AES) containing previewed information is constructed via the difference operator and state augmentation technique. Then, for the AES, the state feedback and static output feedback are introduced, and when considering the output feedback, a previewable reference signal is utilized by modifying the output equation. The preview controllers’ parameter matrices can be achieved from the solution of LMI problems. The superiority of the PC is illustrated via two numerical examples.


Author(s):  
MOURAD KCHAOU ◽  
AHMED TOUMI ◽  
MANSOUR SOUISSI

This paper is concerned with the problem of non-fragile (resilient) H∞ control for a class of state-delay nonlinear discrete-time systems described by (TS) fuzzy models where both the state feedback and static output feedback are investigated. Based on basis-dependent Lyapunov-krasovskii function, sufficient conditions are derived to achieve the system stability and the H∞ performance. The linear matrix inequality (LMI) approach is proposed to obtain the state-feedback gains, and a homotopy-based iterative LMI algorithm is developed to get the static output feedback gains. An illustrative example shows the effectiveness and the feasibility of the theoretical developments.


Sign in / Sign up

Export Citation Format

Share Document