scholarly journals Soil Loss and Sediment Export from Land Use of the George Town Conurbation Catchment

Author(s):  
Zullyadini A. Rahaman ◽  
Mohamad Adam Omar ◽  
Narimah Samat ◽  
and Mohd Amirul Mahamud

The information on the land use and soil conservation practice based on year 2006, 2010 and 2014, hence offering an opportunity to model the impacts of land use change on erosion, deposition and surface water runoff. Limitation in the use of hydrological models had been their inability to handle the large amount of input data that describe the heterogeneity of the natural system. In this study, a procedure that takes into account soil conservation practice based on the land use change, the response of soil erosion and sediment export from the George Town Conurbation catchment area, and average annual sediment yields were estimated for each grid cell of the watershed to identify the critical erosion areas of rural and urban planning proposes. Average annual sediment yield and data on a grid basis estimated using Universal Soil Loss Equation (USLE) and an emerging technology represented by Geographic Information System (GIS) used as a tool to produce a map for erosion rate. The changing of the land use from forest to agriculture and then to an urban area is a challenging task to research on land use demand for population, and environmental impact assessment is important for the planning of natural resources management, allowing research the modification of land use properly and implement more sustainable for long term management strategies. The challenge is to formulate strategies that would promote an integrated approach to the land use planning at an appropriate level as to address the issues that arose. Modelling for creating urban growth boundary for the George Town Conurbation must have to be controlled surface runoff and soil loss and sediment export from land use of the George Town Conurbation catchment.

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 584 ◽  
Author(s):  
Zuzheng Li ◽  
Xiaoqin Cheng ◽  
Hairong Han

Ecosystem services (ES), defined as benefits provided by the ecosystem to society, are essential to human well-being. However, it remains unclear how they will be affected by land-use changes due to lack of knowledge and data gaps. Therefore, understanding the response mechanism of ecosystem services to land-use change is critical for developing systematic and sound land planning. In this study, we aimed to explore the impacts of land-use change on the three ecosystem services, carbon storage (CS), flood regulation (FR), and soil conservation (SC), in the ecological conservation area of Beijing, China. We first projected land-use changes from 2015 to 2030, under three scenarios, i.e., Business as Usual (BAU), Ecological Land Protection (ELP), and Rapid Economic Development (RED), by interactively integrating the Markov model (Quantitative simulation) with the GeoSOS-FLUS model (Spatial arrangement), and then quantified the three ecosystem services by using a spatially explicit InVEST model. The results showed that built-up land would have the most remarkable growth during 2015–2030 under the RED scenario (2.52% increase) at the expense of cultivated and water body, while forest land is predicted to increase by 152.38 km2 (1.36% increase) under the ELP scenario. The ELP scenario would have the highest amount of carbon storage, flood regulation, and soil conservation, due to the strict protection policy on ecological land. The RED scenario, in which a certain amount of cultivated land, water body, and forest land is converted to built-up land, promotes soil conservation but triggers greater loss of carbon storage and flood regulation capacity. The conversion between land-use types will affect trade-offs and synergies among ecosystem services, in which carbon storage would show significant positive correlation with soil conservation through the period of 2015 to 2030, under all scenarios. Together, our results provide a quantitative scientific report that policymakers and land managers can use to identify and prioritize the best practices to sustain ecosystem services, by balancing the trade-offs among services.


2019 ◽  
Author(s):  
Abreham Berta Aneseyee

Abstract Background: Information on soil loss and sediment export is essential to identify hotspots of soil erosion for conservation interventions in a given watershed. This study aims at investigating the dynamic of soil loss and sediment export associated with land use/land cover change and identifies soil loss hotspot areas in Winike watershed of Omo-gibe basin of Ethiopia. Spatial data collected from satellite images, topographic maps, meteorological and soil data were analyzed. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) of sediment delivery ratio (SDR) model was used based on analysis of land use/land cover maps and RUSLE factors. Result: The results showed that total soil loss increased from 774.86 thousand tons in 1988 to 951.21 thousand tons in 2018 while the corresponding sediment export increased by 3.85 thousand tons in the same period. These were subsequently investigated in each land-use type. Cultivated fields generated the highest soil erosion rate, which increased by 10.02 t/ha/year in 1988 to 43.48 t/ha/year in 2018. This corresponds with the expansion of the cultivated area that increased from 44.95 thousand ha in 1988 to 59.79 thousand ha in 2018. This is logical as the correlation between soil loss and sediment delivery and expansion of cultivated area is highly significant (p<0.01). Sub-watershed six (SW-6) generated the highest soil loss (62.77 t/ha/year) and sediment export 16.69 t/ha/year, followed by Sub-watershed ten (SW-10) that are situated in the upland plateau. Conversely, the lower reaches of the watershed are under dense vegetation cover and experiencing less erosion. Conclusion: Overall, the changes in land use/land cover affect significantly the soil erosion and sediment export dynamism. This research is used to identify an area to prioritize the watershed for immediate management practices. Thus, land use policy measures need to be enforced to protect the hydropower generation dams at downstream and the ecosystem at the watershed.


2019 ◽  
Vol 11 (12) ◽  
pp. 3353 ◽  
Author(s):  
Mohammad Reza Azimi Sardari ◽  
Ommolbanin Bazrafshan ◽  
Thomas Panagopoulos ◽  
Elham Rafiei Sardooi

Climate and land use change can influence susceptibility to erosion and consequently land degradation. The aim of this study was to investigate in the baseline and a future period, the land use and climate change effects on soil erosion at an important dam watershed occupying a strategic position on the narrow Strait of Hormuz. The future climate change at the study area was inferred using statistical downscaling and validated by the Canadian earth system model (CanESM2). The future land use change was also simulated using the Markov chain and artificial neural network, and the Revised Universal Soil Loss Equation was adopted to estimate soil loss under climate and land use change scenarios. Results show that rainfall erosivity (R factor) will increase under all Representative Concentration Pathway (RCP) scenarios. The highest amount of R was 40.6 MJ mm ha−1 h−1y−1 in 2030 under RPC 2.6. Future land use/land cover showed rangelands turning into agricultural lands, vegetation cover degradation and an increased soil cover among others. The change of C and R factors represented most of the increase of soil erosion and sediment production in the study area during the future period. The highest erosion during the future period was predicted to reach 14.5 t ha−1 y−1, which will generate 5.52 t ha−1 y−1 sediment. The difference between estimated and observed sediment was 1.42 t ha−1 year−1 at the baseline period. Among the soil erosion factors, soil cover (C factor) is the one that watershed managers could influence most in order to reduce soil loss and alleviate the negative effects of climate change.


2020 ◽  
Vol 16 (No. 1) ◽  
pp. 39-49
Author(s):  
Sana Bouguerra ◽  
Sihem Jebari ◽  
Jamila Tarhouni

Changes in land use and land cover (LULC) are generally associated with environment pollution and the degradation of natural resources. Detecting LULC changes is essential to assess the impact on ecosystem services. The current research studies the impact of the LULC change on the soil loss and sediment export in a period of 43 years from 1972 to 2015. Landsat imageries were classified into five classes using a supervised classification method and the maximum likelihood Algorithm. Then, the sediment retention service for avoiding reservoir sedimentation was assessed using the InVEST SDR (integrated valuation of ecosystem services and trade-offs sediment delivery ratio) model. The results showed that the changes are very important in this study period (1972–2015). Forests were reduced by 18.72% and croplands were increased by approximately 54%. The InVEST SDR model simulation results reveal an increase in the sediment export and soil loss, respectively, from 1.68 to 5.57 t/ha/year and from 15.22 to 43.61 t/ha/year from the year 1972 to 2015. These results highlight the need for targeted policies on integrated land and water resource management. Then, it is important to improve the common understanding of land use and land cover dynamics to the different stakeholders. All these can help in projecting future changes in the LULC and to investigate more appropriate policy interventions for achieving better land and water management.


2010 ◽  
Vol 138 (1-2) ◽  
pp. 83-94 ◽  
Author(s):  
Olivier Evrard ◽  
Guillaume Nord ◽  
Olivier Cerdan ◽  
Véronique Souchère ◽  
Yves Le Bissonnais ◽  
...  

2009 ◽  
Vol 23 (1) ◽  
pp. 86
Author(s):  
Beny Harjadi

Soil erosion is crucial problem in India where more than 70% of land in degraded. This study is to establish conservation priorities of the sub watersheds across the entire terrain, and suggest suitable conservation measures. Soil conservation practices are not only from erosion data both qualitative SES (Soil Erosion Status) model and quantitative MMF (Morgan, Morgan and Finney) model erosion, but we have to consider LCC (Land Capability Classification) and LULC (Land Use Land Cover). Study demonstrated the use of RS (Remote Sensing) and GIS (Geographic Information System) in soil erosion risk assessment by deriving soil and vegetation parameters in the erosion models. Sub-watersheds were prioritized based on average soil loss and the area falls under various erosion risk classes for conservation planning. The annual rate of soil loss based on MMF model was classified into five soil erosion risk classes for soil conservation measures. From 11 sub watersheds, for the first priority of the watershed is catchment with the small area and the steep slope. Recommendation for steep areas (classes VI, VII, and VIII) land use allocation should be made to maintain forest functions.


Author(s):  
Haiyan Fang

Soil conservation measures are widely used to control soil erosion and sediment loss; however, their proper usage relies on a deep understanding of the responses of runoff and sediment loss to land management and rainfall characteristics. In the present study, a long-term (2014–2020) monitored dataset derived from ten runoff plots in the upstream catchment of the Miyun Reservoir in Beijing, China, was used to study runoff and sediment loss responses to land use management and rainfall characteristics. The study results show that plots with no soil conservation measures had the highest runoff depth of 75 mm and suffered the highest sediment loss, at a rate of 3200 t km−2 yr−1. The terraced and vegetated plots generated lower runoff depths, with soil loss rates less than 213.0 t km−2 yr−1. With the exception of the contour tillage plots on steep slopes, the vegetation and engineering measures can efficiently reduce runoff and sediment loss, with both runoff and sediment reduction efficiencies higher than 76%. Statistical analyses indicate that, on the plots of bare soil and cultivation without soil conservation measures, runoff and sediment loss were mainly affected by the maximum 30 min rainfall intensity. However, on the plots with soil conservation measures, they were mainly determined by rainfall amount and duration. The sediment loss rate can be well fitted with the runoff depth using a power function. Based on the analyses, water-saving soil conservation measures are recommended for the study area. In addition, the size of terraces should be reconsidered on gentle slopes, and the coverage of forest, shrubs, and grass on slopes should be reduced, thus allowing for more surface runoff generation to ensure drinking water safety. In general, for the study area, soil conservation measures are required on the bare soil and cultivated slopes.


Sign in / Sign up

Export Citation Format

Share Document