sediment delivery
Recently Published Documents


TOTAL DOCUMENTS

603
(FIVE YEARS 172)

H-INDEX

51
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Jonathan Pitchford ◽  
Kimberly Cressman ◽  
Julia A Cherry ◽  
Brook T Russell ◽  
Jay McIlwain ◽  
...  

Abstract The Grand Bay estuary is in the north-central Gulf of Mexico and lacks riverine sediment input for marsh elevation maintenance. This study quantified trends in surface elevation change and accretion along an elevation gradient within the estuary. Elevation change rates were compared to short (13.71 mm/yr; 95% CI: -2.38 – 29.81), medium (6.97 mm/yr; 95% CI: 3.31 – 10.64), and long-range (3.50 mm/yr; 95% CI: 2.88 – 4.11) water level rise (WLR) rates for the region. Elevation change rates ranged from 0.54 mm/yr (95% CI: -0.63 – 1.72) to 5.45 mm/yr (95% CI: 4.27 – 6.62) and accretion rates ranged from 0.82 mm/yr (95% CI: -0.16 – 1.80) to 3.89 mm/yr (95% CI: 2.90 – 4.89) among marsh zones. Only the elevation change rate at a Juncus roemerianus marsh located high in the tidal frame was lower than long- ( P <0.001) and medium-range WLR rates ( P <0.01). The elevation change rate at a lower elevation J. roemerianus marsh was higher than the long-range WLR rate ( P <0.05). No marsh zones had elevation change rates that were significantly different from short-range WLR. These results suggest that J. roemerianus marshes higher in the tidal frame with limited sediment delivery are the most vulnerable to increases in sea level. Lower elevation marshes had higher rates of elevation change driven by sediment accretion and biogenic inputs. Other local research suggests that shoreline erosion is a threat to marsh persistence but provides elevation capital to interior marshes. Marsh migration is potential solution for marsh persistence in this relatively undeveloped area of the Gulf Coast.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Frances E. Dunn ◽  
Philip S. J. Minderhoud

AbstractThe Mekong delta is experiencing rapid environmental change due to anthropogenic activities causing accelerated subsidence, sea-level rise and sediment starvation. Consequentially, the delta is rapidly losing elevation relative to sea level. Designating specific areas for sedimentation is a suggested strategy to encourage elevation-building with nature in deltas. We combined projections of extraction-induced subsidence, natural compaction and global sea-level rise with new projections of fluvial sediment delivery to evaluate the potential effectiveness of sedimentation strategies in the Mekong delta to 2050. Our results reveal that with current rates of subsidence and sediment starvation, fluvial sediments alone can only preserve elevation locally, even under optimistic assumptions, and organic sedimentation could potentially assume a larger role. While sedimentation strategies alone have limited effectiveness in the present context, combined with enhanced organic matter retention and interventions reducing anthropogenic-accelerated subsidence, they can considerably delay future relative sea-level rise, buying the delta crucial time to adapt.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Bébhinn Anders ◽  
Shane Tyrrell ◽  
David Chew ◽  
Gary O’Sullivan ◽  
Chris Mark ◽  
...  

Sediment delivery and supply are explicitly controlled by variations in broad-scale processes such as climate, tectonics and eustasy. These in turn influence fluvial processes and hinterland evolution. A bespoke multi-proxy approach (integrating apatite and zircon U-Pb geochronology, trace elements in apatite, and Pb-in-K-feldspar provenance tools) coupled with outcrop investigation is used to constrain the temporal trends in sediment delivery to channel sandstones of the fluvio-estuarine mid-Viséan Mullaghmore Sandstone Formation, Ireland. Provenance data indicate unique detrital signatures for all sampled horizons, indicating the fluctuating nature of sediment supply to this medium-sized basin. Tectonism and/or abrupt relative sea-level fall likely caused fluvial rejuvenation, resulting in local basement sourcing of the initial fill. Older and more distal sources, such as the Nagssugtoqidian Belt of East Greenland, become more prominent in stratigraphically younger channel sandstones suggesting catchment expansion. Paleoproterozoic to Mesoproterozoic sources are most dominant, yet the detrital grain cargo varies in each channel sandstone. Proximal sources such as the Donegal Batholith and Dalradian Supergroup are variable and appear to switch on and off. These signal shifts are likely the result of channel migration and paleoclimatic fluctuation. A monsoonal climate and large-scale wildfire events (evidenced by fusain) likely contributed to modify plant cover, intensify erosion, and increase run-off and sediment delivery rates from specific areas of the hinterland.


2022 ◽  
Vol 961 (1) ◽  
pp. 012096
Author(s):  
Rana A. Al-Zubaidy ◽  
Rawaa H. Ismaeil

Abstract Environmental and civil engineering projects frequently employ the open channel side intake structure. However, the commonest among the issues faced in most of the lateral intakes include sedimentation and sediment delivery. This involves several problems namely, decreased flow discharge capacity in the irrigation canals and the threat of water blockage during times of low water flow. Besides, this problem with the sediment either lowers the performance levels or causes failure of the facilities that this sub-channel serves. Hence, the engineers focused on designing an intake with the features of high flow discharge and low sediment delivery. This paper attempts to review and summarize the literature relevant to the branching channel flow and submerged vane technique to minimize the sediment-related issues. The present review highlights that most of the earlier research work done dealt with the characteristics of the flow in a right-angle branch channel possessing rigid confines. Also, more investigations are required regarding the implications of the submerged vanes. Besides, no comprehensive studies are available on the saddle point itself, and a high percentage of the studies have been part of earlier investigations that had focused on only briefly outlining this subject.


2021 ◽  
Vol 10 (4) ◽  
pp. 54-62
Author(s):  
Ju. M. Kotsur ◽  
Ju. M. Ladytko ◽  
I. A. Narkevich ◽  
E. V. Flisyuk

Introduction. Direct compression technology is one of the most common tablet technologies. As known, many active pharmaceutical ingredients are not suitable for this technology without the addition of special excipients. A useful tool for determining the suitability of powdered materials for direct compression technology is the Sediment Delivery Model (SeDeM) method, based on the concept of Quality by Design. The presented method allows not only to assess the suitability of a material for direct compression, but also helps to predict the composition of a solid dosage form in the form of a tablet, which, in turn, leads to a significant reduction in experimental work carried out in the development of a new drug.Aim. Prediction of the compositions of matrix tablets based on sodium 4,4'-(propanediamido)dibenzoate with prolonged release, obtained by direct compression using the method of mathematical modeling SeDeM.Materials and methods. The objects of the study were the original substance sodium 4,4'-(propanediamido)dibenzoate, as well as a number of auxiliary substances, which included polymers used for dosage forms with prolonged release, a dusting component – magnesium stearate, and a filler – lactose monohydrate. Physicochemical and technological properties of APIs, explosives, obtained tablet mixtures and tablets were studied in accordance with the requirements of the State Pharmacopoeia of the Russian Federation XIV ed. and EP 9th ed.Results and discussion. The properties of the substance and excipients were assessed in accordance with the SeDeM method. It was found that the substance 4,4'-(propanediamido) sodium dibenzoate is not suitable for direct pressing due to poor flowability and low compressibility. Hypromellose Methocel K4M had good compressibility, but it did not have sufficient flowability. The other tested polymers had satisfactory properties for the direct compression technology. The composition of the tablet mixtures was calculated using the SeDeM method, the obtained tablet mixtures had satisfactory technological characteristics for obtaining tablets by direct compression. The tablets obtained as a result of the experiment also met the pharmacopoeial requirements.Conclusion. Prediction of the composition of sustained-release tablets based on the original substance sodium 4,4'-(propanediamido)dibenzoate was carried out using the SeDeM method. It was found that this method is suitable for the development of the composition of tablets based on sodium 4,4'-(propanediamido)dibenzoate.


2021 ◽  
Author(s):  
Brent S Hawks ◽  
M Chad Bolding ◽  
W Michael Aust ◽  
Scott M Barrett ◽  
Erik Schilling ◽  
...  

Abstract Forestry best management practices (BMPs) were created in response to the Clean Water Act of 1972 to protect water quality from nonpoint source pollutants such as sediment. The objectives of this study were to quantify the relationship between BMP implementation and sediment delivery on 58 recently harvested sites across three physiographic regions and five forest operational features. BMP implementation rates, erosion rates, sediment delivery ratios, and sediment masses were calculated at 183 silt fences functioning as sediment traps adjacent to streams in Virginia and North Carolina. Major access system features, including stream crossings, skid trails, and haul roads, typically delivered the greatest sediment mass to streams and had the highest sediment delivery ratios on a per feature basis. When accounting for sediment mass delivered and area in each feature, harvest area accounted for approximately 70% of sediment delivered to streams for all regions. Most features had proportionally higher erosion rates than sediment masses collected at silt fences, indicating that most erosion generated by forest operations is being trapped by either harvest areas or streamside management zones. For most features and regions, as BMP implementation increased, erosion rates and the sediment masses delivered to streams decreased. Study Implications Forestry best management practices (BMPs) are designed to mitigate the amount of sediment entering streams and affecting other aquatic features as a result of forest operations. In this study, a significant inverse relationship between BMP implementation and the amount of sediment delivered to streams was found, indicating that increasing levels of BMP implementation reduces sediment delivery. Most of the erosion caused by forest operations is being trapped before it is delivered to streams. This research highlights the importance of leaving streamside management zones along streams and minimizing the extent of bare soil and area in temporary and permanent roads.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3564
Author(s):  
Robert J. Wasson ◽  
David M. Weaver

Examples of sediment budgets are needed to document the range of budget types and their controls. Sediment budgets for three small agricultural catchments (7.6 to 15.6 km2) in southwestern Australia are dominated by channel and gully erosion, with sheet and rill erosion playing a subordinate role. Erosion was increased by clearing naturally swampy valley floors and hillslopes for agriculture and grazing, and episodic intense rainstorms. The proportion of sediment from channel and gully erosion in the sediment budget appears to be determined by the depth of alluvial fills. Dryland salinization caused by clearing native vegetation has connected hillslopes to channels across narrow floodplains, increasing the Sediment Delivery Ratio (SDR). Yield and SDR are found to be insensitive to major in-catchment changes of vegetation cover after initial clearing, the ratio of sheet and rill erosion/channel and gully erosion, and sediment storage masses. This supports the idea that yield alone is often a poor indicator of the impact of land use and land management change. Riparian vegetation would reduce sediment yield but not phosphorus yield. This study demonstrates the value of mixed methods where field observations and chemical analysis are combined with information from local people.


2021 ◽  
Author(s):  
◽  
Debbie Mair

<p>This ecological and geomorphological assessment of Horokiri Stream and Ration Creek was conducted across four longitudinal zones to explore the effects of sediment delivery, run-off, channel form, riparian and in-stream habitat. The Horokiri Stream channel has moved approximately 7 metres westward over the last 20 years, with both banks now covered in long grass, flaxes, natives with a mix of tall canopy trees. Looking at stream, Spearman’s for Ration at Figure 27 (n = 16, rho -0.243, p = 0.36) as deposited sediment increased, MCI decreased, non-significant. Spearman’s for Horokiri at Figure 28 (n = 16, rho 0.247, p = 0.35) as MCI increased with sediment, non-significant. Results from upstream of the riparian zones showed more deposited fine sediment. However, within both the riparian zones the sediment deposition was much lower. The native riparian planting along the stream banks had a positive effect on reducing sedimentation. The findings support the concept that the restoration of riparian zones with buffer widths exceeding 10 metres can improve stream habitat and invertebrate health. There was no relationship between flow and deposition rate P(X2>241.84) = 0.24. Figure 24 shows deposited sediment on MCI depending on land use groups (X2 = 11.81, df = 4, p = 0.019). No statistically significant differences were found (comparing the effect of sediment between different land use management groups).  An experiment investigated a disturbance hypothesis in both Ration Creek and Horokiri Stream was conducted during February 2019. The experiment was designed to be long enough to study the effects of four weekly pulse flushing events created by scrapping the stream bed with a drain drag tool and the effects of a press sustained disturbance on the macroinvertebrate community. I measured the sediment and the macroinvertebrate captured in each trap within the experiment site every seven days. My prediction was that macroinvertebrate communities subject to sustained fine sediment delivery (press disturbance) are affected by simulated pulse flushing events (pulse disturbance). A comparison of sediment depositional rate before and after the manipulative experiment (Figure 36) showed higher sediment deposition after the pulse flushing events (1.55 W/A/D) compared to before during the assessment phase (0.88 W/A/D) in Horokiri (t = 2.35, df = 8.95, p = 0.04), but no significant difference before (1.57 W/A/D) or after (1.38 W/A/D) in Ration (t = -0.818, df = 7.71, p = 0.44). It appeared that the smaller riparian buffer width of 2-5m at Ration Creek did not limit sediment deposition. The effects of sediment disturbance in the experiment reflect the rapid ability of macroinvertebrates to respond to sediment by drifting out of unsuitable areas. The weekly pulse disturbance events resulted in increased sediment deposition compared to the background levels of sediment deposition (indicative of a press disturbance) in both streams. As pulse disturbance events increased, the number of macroinvertebrate taxa decreased. Horokiri Stream invertebrate communities declined by 33% compared to Ration Creek which declined by 50%.</p>


2021 ◽  
Author(s):  
◽  
Debbie Mair

<p>This ecological and geomorphological assessment of Horokiri Stream and Ration Creek was conducted across four longitudinal zones to explore the effects of sediment delivery, run-off, channel form, riparian and in-stream habitat. The Horokiri Stream channel has moved approximately 7 metres westward over the last 20 years, with both banks now covered in long grass, flaxes, natives with a mix of tall canopy trees. Looking at stream, Spearman’s for Ration at Figure 27 (n = 16, rho -0.243, p = 0.36) as deposited sediment increased, MCI decreased, non-significant. Spearman’s for Horokiri at Figure 28 (n = 16, rho 0.247, p = 0.35) as MCI increased with sediment, non-significant. Results from upstream of the riparian zones showed more deposited fine sediment. However, within both the riparian zones the sediment deposition was much lower. The native riparian planting along the stream banks had a positive effect on reducing sedimentation. The findings support the concept that the restoration of riparian zones with buffer widths exceeding 10 metres can improve stream habitat and invertebrate health. There was no relationship between flow and deposition rate P(X2>241.84) = 0.24. Figure 24 shows deposited sediment on MCI depending on land use groups (X2 = 11.81, df = 4, p = 0.019). No statistically significant differences were found (comparing the effect of sediment between different land use management groups).  An experiment investigated a disturbance hypothesis in both Ration Creek and Horokiri Stream was conducted during February 2019. The experiment was designed to be long enough to study the effects of four weekly pulse flushing events created by scrapping the stream bed with a drain drag tool and the effects of a press sustained disturbance on the macroinvertebrate community. I measured the sediment and the macroinvertebrate captured in each trap within the experiment site every seven days. My prediction was that macroinvertebrate communities subject to sustained fine sediment delivery (press disturbance) are affected by simulated pulse flushing events (pulse disturbance). A comparison of sediment depositional rate before and after the manipulative experiment (Figure 36) showed higher sediment deposition after the pulse flushing events (1.55 W/A/D) compared to before during the assessment phase (0.88 W/A/D) in Horokiri (t = 2.35, df = 8.95, p = 0.04), but no significant difference before (1.57 W/A/D) or after (1.38 W/A/D) in Ration (t = -0.818, df = 7.71, p = 0.44). It appeared that the smaller riparian buffer width of 2-5m at Ration Creek did not limit sediment deposition. The effects of sediment disturbance in the experiment reflect the rapid ability of macroinvertebrates to respond to sediment by drifting out of unsuitable areas. The weekly pulse disturbance events resulted in increased sediment deposition compared to the background levels of sediment deposition (indicative of a press disturbance) in both streams. As pulse disturbance events increased, the number of macroinvertebrate taxa decreased. Horokiri Stream invertebrate communities declined by 33% compared to Ration Creek which declined by 50%.</p>


Sign in / Sign up

Export Citation Format

Share Document