scholarly journals Incretin Hormones and Type 2 Diabetes – Mechanistic Insights and Therapeutic Approaches

Author(s):  
Geke Aline Boer ◽  
Jens Juul Holst

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from the gut upon nutrient stimulation and regulate postprandial metabolism. These hormones are known as classical incretin hormones and are responsible for a major part of postprandial insulin release. The incretin effect is severely reduced in patients with type 2 diabetes, but it was discovered that administration of GLP-1 agonists was capable of normalizing glucose control in these patients. Over the last decades, much research has been focused on the development of incretin-based therapies for type 2 diabetes. These therapies include incretin receptor agonists and inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-4. Especially the development of diverse GLP-1 receptor agonists has shown immense success, whereas studies of GIP monotherapy in patients with type 2 diabetes have consistently been disappointing. Interestingly, both GIP-GLP-1 co-agonists and GIP receptor antagonists administered in combination with GLP-1R agonists appear to be efficient with respect to both weight loss and control of diabetes, although the molecular mechanisms behind these effects remain unknown. This review describes our current knowledge of the two incretin hormones and the development of incretin-based therapies for treatment of type 2 diabetes.

Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 473
Author(s):  
Geke Aline Boer ◽  
Jens Juul Holst

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from the gut upon nutrient stimulation and regulate postprandial metabolism. These hormones are known as classical incretin hormones and are responsible for a major part of postprandial insulin release. The incretin effect is severely reduced in patients with type 2 diabetes, but it was discovered that administration of GLP-1 agonists was capable of normalizing glucose control in these patients. Over the last decades, much research has been focused on the development of incretin-based therapies for type 2 diabetes. These therapies include incretin receptor agonists and inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-4. Especially the development of diverse GLP-1 receptor agonists has shown immense success, whereas studies of GIP monotherapy in patients with type 2 diabetes have consistently been disappointing. Interestingly, both GIP-GLP-1 co-agonists and GIP receptor antagonists administered in combination with GLP-1R agonists appear to be efficient with respect to both weight loss and control of diabetes, although the molecular mechanisms behind these effects remain unknown. This review describes our current knowledge of the two incretin hormones and the development of incretin-based therapies for treatment of type 2 diabetes.


2009 ◽  
Vol 6 (3) ◽  
pp. 16-26 ◽  
Author(s):  
T I Romantsova

Insulin resistance in muscle and liver and β-cell failure represent the core pathophysiologic defects in type 2 diabetes. Now it isrecognized that the β-cell failure occurs much earlier and is more severe than previously thought. As a result, earlier and more aggressive new therapy is needed to achiev e better control of diabetes and to prev ent/slow the progressive B-cell failure that already is w ell established in IGT subjects. One approach is to target the incretin mimetic hormone glucagon-like peptide-1 (GLP-1). When blood glucose levels are elevated, GrP-1 stimulates insulin secretion, decreases glucagon secretion, impro ves β-cell function, and slows gastric emptying. GrP-1 production is reduced in patients with type 2 diabetes. Furthermore, GrP-1 is rapidly degraded by the dipeptidyl peptidase 4 (DPP-4) enzyme. Trials have showed, that new inhibitor DPP-4 vildagliptin (Galvus) hav e been demonstrated to significantly reduce HbA lc, fasting and prandial glucose levels when used as monotherapy and in соmbination with traditional agents. Advantages of vildagliptin include few adverse events, low risk of hypoglycemia, neutral effect on body weight, and a once-daily oral dosing regimen. Inaddition, vildagliptin may preserve the decline in β-cell function. Hence, vildagliptin may modify the natural progressive course of diabetes; this however, must be confirmed with longer-term controlled studies


2021 ◽  
Vol 22 (12) ◽  
pp. 6578
Author(s):  
Hideki Kitaura ◽  
Saika Ogawa ◽  
Fumitoshi Ohori ◽  
Takahiro Noguchi ◽  
Aseel Marahleh ◽  
...  

Patients with type 2 diabetes have an increased risk of fracture compared to the general population. Glucose absorption is accelerated by incretin hormones, which induce insulin secretion from the pancreas. The level of the incretin hormone, glucagon-like peptide-1 (GLP-1), shows an immediate postprandial increase, and the circulating level of intact GLP-1 is reduced rapidly by dipeptidyl peptidase-4 (DPP-4)-mediated inactivation. Therefore, GLP-1 receptor agonists and DPP-4 inhibitors are effective in the treatment of type 2 diabetes. However, these incretin-related diabetic agents have been reported to affect bone metabolism, including bone formation and resorption. These agents enhance the expression of bone markers, and have been applied to improve bone quality and bone density. In addition, they have been reported to suppress chronic inflammation and reduce the levels of inflammatory cytokine expression. Previously, we reported that these incretin-related agents inhibited both the expression of inflammatory cytokines and inflammation-induced bone resorption. This review presents an overview of current knowledge regarding the effects of incretin-related diabetes drugs on osteoblast differentiation and bone formation as well as osteoclast differentiation and bone resorption. The mechanisms by which incretin-related diabetes drugs regulate bone formation and bone resorption are also discussed.


2009 ◽  
Vol 05 (0) ◽  
pp. 38
Author(s):  
Chantal Mathieu ◽  

Type 2 diabetes is a progressive disease characterised by deteriorating β-cell function and glycaemic control. To counter this, affected individuals require regular intensification of their antidiabetes treatments to provide appropriate metabolic control. However, current treatment options – such as sulphonylureas, thiazolidinediones and insulins – induce weight gain, which can reduce patient acceptance and/or compliance with treatment and may have significant health implications. In addition, many of the antidiabetic therapies raise the risk of hypoglycaemic episodes. Therefore, patients, physicians and healthcare providers are looking for new therapeutic options to address this large and growing burden of diabetes. Incretin-based therapies – including glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors – are becoming a popular treatment option for patients with type 2 diabetes because they offer many benefits compared with other antidiabetic therapies. First, incretin-based therapies are associated with significant reductions in glycated haemoglobin (HbA1c) with a low inherent risk of hypoglycaemic events. In addition, GLP-1 receptor agonists are associated with reductions in bodyweight and systolic blood pressure. Incretin-based therapies such as liraglutide also offer the potential to improve β-cell function, an important underlying mechanism of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document