scholarly journals Insights Into the Roles of the Sideroflexins / SLC56 Family in Iron Homeostasis and Iron-Sulfur Biogenesis

Author(s):  
Nesrine Tifoun ◽  
José M. De las Heras ◽  
Arnaud Guillaume ◽  
Sylvina Bouleau ◽  
Bernard Mignotte ◽  
...  

Sideroflexins (SLC56 family) are highly conserved multi-spanning transmembrane proteins inserted in the inner mitochondrial membrane in eukaryotes. Few data are available on their molecular function but, since their first description, they were thought to be metabolite transporters probably required for iron utilization inside the mitochondrion. Such as numerous mitochondrial transporters, sideroflexins remain poorly characterized. The prototypic member SFXN1 has been recently identified as the previously unknown mitochondrial transporter of serine. Nevertheless, pending questions on the molecular function of sideroflexins remain unsolved, especially their link with iron metabolism. Here, we review the current knowledge on sideroflexins, their presumed mitochondrial functions and the sparse - but growing - evidence linking sideroflexins to iron homeostasis and iron-sulfur cluster biogenesis. Since an imbalance in iron homeostasis can be detrimental at the cellular and organismal levels, we also investigate the relationship between sideroflexins, iron and physiological disorders. Investigating Sideroflexins’ functions constitutes an emerging research field of great interest and will certainly lead to main discoveries on mitochondrial physiopathology.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Nesrine Tifoun ◽  
José M. De las Heras ◽  
Arnaud Guillaume ◽  
Sylvina Bouleau ◽  
Bernard Mignotte ◽  
...  

Sideroflexins (SLC56 family) are highly conserved multi-spanning transmembrane proteins inserted in the inner mitochondrial membrane in eukaryotes. Few data are available on their molecular function, but since their first description, they were thought to be metabolite transporters probably required for iron utilization inside the mitochondrion. Such as numerous mitochondrial transporters, sideroflexins remain poorly characterized. The prototypic member SFXN1 has been recently identified as the previously unknown mitochondrial transporter of serine. Nevertheless, pending questions on the molecular function of sideroflexins remain unsolved, especially their link with iron metabolism. Here, we review the current knowledge on sideroflexins, their presumed mitochondrial functions and the sparse—but growing—evidence linking sideroflexins to iron homeostasis and iron-sulfur cluster biogenesis. Since an imbalance in iron homeostasis can be detrimental at the cellular and organismal levels, we also investigate the relationship between sideroflexins, iron and physiological disorders. Investigating Sideroflexins’ functions constitutes an emerging research field of great interest and will certainly lead to the main discoveries of mitochondrial physio-pathology.


2004 ◽  
Vol 24 (11) ◽  
pp. 4848-4857 ◽  
Author(s):  
Jana Gerber ◽  
Karina Neumann ◽  
Corinna Prohl ◽  
Ulrich Mühlenhoff ◽  
Roland Lill

ABSTRACT Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-27-SCI-27
Author(s):  
Tracey Rouault

Abstract Abstract SCI-27 Iron metabolism is regulated in mammals to assure that adequate iron is delivered to the hematopoietic system to support erythropoiesis. In systemic iron metabolism, regulation of both iron uptake from the diet and release from erythrophagocytosing macrophages is coordinated by action of the peptide hormone, hepcidin, which inhibits activity of the iron exporter, ferroportin. In general, high expression of hepcidin diminishes duodenal iron uptake and reduces macrophage iron release, a combination observed in the anemia of chronic disease. Low expression of hepcidin, which is synthesized by hepatocytes and influenced by transferrin receptor 2, HFE, hemojuvelin and bone morphogenetic receptors, facilitates iron uptake. Mutations affecting genes in the hepcidin pathway cause hemochromatosis, characterized by systemic iron overload that affects mainly hepatocytes and cardiac myocytes, but spares the CNS. In contrast, there are several degenerative diseases of the CNS in which neuronal iron overload is prominent and may play a causal role. The underlying pathophysiologies of neuronal brain iron accumulation syndromes remain unclear, even though several causal genes have been identified, including pantothenate kinase 2 and aceruloplasminemia. In some cases, increased iron may be inaccessible, and cells may suffer from functional iron insufficiency, as we propose for animals that lack iron regulatory protein 2. It is also possible that errors in subcellular iron metabolism can lead to mitochondrial iron overload and concomitant cytosolic iron deficiency, a combination observed in Friedreich ataxia, ISCU myopathy, and the sideroblastic anemia caused by glutaredoxin 5 deficiency. In each of these diseases, mitochondrial iron-sulfur cluster assembly is impaired, and it appears that normal regulation of mitochondrial iron homeostasis depends on intact iron-sulfur cluster assembly. Finally, in heme oxygenase 1 deficient animals, macrophages in the spleen and liver die upon erythrophagocytosis, and failure to normally metabolize heme leads to shift of heme iron to proximal tubules and macrophages of the kidney. Thus, treatment of “iron overload” must depend on the underlying causes, and removal of iron is appropriate in hemochromatosis, but more specific forms of therapy are needed for other forms of iron overload. 1. Ye, H. & Rouault, T. A. (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49, 4945–4956. 2. Zhang, A. S. & Enns, C. A. (2009). Molecular mechanisms of normal iron homeostasis. Hematology Am Soc Hematol Educ Program 207–214. 3. Ye, H., Jeong, S. Y., Ghosh, M. C., Kovtunovych, G., Silvestri, L., Ortillo, D., Uchida, N., Tisdale, J., Camaschella, C. & Rouault, T. A. (2010). Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest 120, 1749–1761. 4. Ghosh, M. C., Tong, W. H., Zhang, D., Ollivierre-Wilson, H., Singh, A., Krishna, M. C., Mitchell, J. B. & Rouault, T. A. (2008). Tempol-mediated activation of latent iron regulatory protein activity prevents symptoms of neurodegenerative disease in IRP2 knockout mice. Proc Natl Acad Sci U S A 105, 12028–12033. 5. Crooks, D. R., Ghosh, M. C., Haller, R. G., Tong, W. H. & Rouault, T. A. (2010). Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood 115, 860–869. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 4 ◽  
Author(s):  
Jérémy Couturier ◽  
Brigitte Touraine ◽  
Jean-François Briat ◽  
Frédéric Gaymard ◽  
Nicolas Rouhier

2014 ◽  
Vol 196 (6) ◽  
pp. 1238-1249 ◽  
Author(s):  
R. Hidese ◽  
H. Mihara ◽  
T. Kurihara ◽  
N. Esaki

Sign in / Sign up

Export Citation Format

Share Document