scholarly journals Evaluation of ((La0.60Sr0.40)0.95Co0.20Fe0.80O3-x)-Ag Composite Anode for Direct Ammonia Solid Oxide Fuel Cells and Effect of Pd Impregnation on the Electrochemical Performance

Author(s):  
Shambhu Rathore ◽  
Aniruddha P. Kulkarni ◽  
Daniel Fini ◽  
Sarbjit Giddey ◽  
Aaron Seeber

Ammonia produced using renewable hydrogen is being viewed as a promising media for the export of energy from locations rich in renewable energy sources. Solid oxide fuel cells (SOFCs) are efficient devices for converting such exported ammonia back into electricity at the point of use, however investigations on materials and operating regime for direct ammonia fuelled SOFCs are limited. The studies on fuel electrodes tailored specifically for ammonia fuel are limited. In this work, we evaluated the direct ammonia SOFC performance with Silver-Lanthanum Strontium Cobalt Ferrite (Ag-LSCF) composite anode and a novel Palladium (Pd) nanoparticle decorated Silver-Lanthanum Strontium Cobalt Ferrite (Pd-Ag-LSCF) composite anode in the temperature range of 500 °C to 800 °C. It is hypothesized that Palladium nanoparticles in the anode provide hydrogen dissolution and shift the ammonia decomposition reaction towards the right. The cell performance was evaluated with both hydrogen and ammonia as fuels and a clear-cut improvement in the performance was observed with the addition of Pd for both the fuels. The results showed a performance enhancement by 20% and 43% with hydrogen and ammonia fuels respectively from the Pd addition of Ag-LSCF anode. Open circuit voltage (OCV) values of the cells with hydrogen and ammonia fuel recorded over the temperature range of 500 °C to 800 °C indicated the possibility of direct electro-oxidation of ammonia in SOFCs.

2013 ◽  
Vol 14 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Nurul Akidah Baharuddin ◽  
Hamimah Abd Rahman ◽  
Andanastuti Muchtar ◽  
Abu Bakar Sulong ◽  
Huda Abdullah

2015 ◽  
Vol 40 (15) ◽  
pp. 5469-5474 ◽  
Author(s):  
M.A. Laguna-Bercero ◽  
A.R. Hanifi ◽  
T.H. Etsell ◽  
P. Sarkar ◽  
V.M. Orera

2015 ◽  
Vol 648 ◽  
pp. 154-159 ◽  
Author(s):  
Isabella Natali Sora ◽  
Valeria Felice ◽  
Francesca Zurlo ◽  
Silvia Licoccia ◽  
Elisabetta Di Bartolomeo

2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 181-181
Author(s):  
Yeong-Shyung Chou ◽  
Tongan Jin ◽  
Nathan L Canfield ◽  
Jeff Bonnett ◽  
Jung Pyung Choi ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2277
Author(s):  
Zhengwen Tu ◽  
Yuanyuan Tian ◽  
Mingyang Liu ◽  
Bin Jin ◽  
Muhammad Akbar ◽  
...  

Recently, appreciable ionic conduction has been frequently observed in multifunctional semiconductors, pointing out an unconventional way to develop electrolytes for solid oxide fuel cells (SOFCs). Among them, ZnO and Li-doped ZnO (LZO) have shown great potential. In this study, to further improve the electrolyte capability of LZO, a typical ionic conductor Sm0.2Ce0.8O1.9 (SDC) is introduced to form semiconductor-ionic composites with LZO. The designed LZO-SDC composites with various mass ratios are successfully demonstrated in SOFCs at low operating temperatures, exhibiting a peak power density of 713 mW cm−2 and high open circuit voltages (OCVs) of 1.04 V at 550 °C by the best-performing sample 5LZO-5SDC, which is superior to that of simplex LZO electrolyte SOFC. Our electrochemical and electrical analysis reveals that the composite samples have attained enhanced ionic conduction as compared to pure LZO and SDC, reaching a remarkable ionic conductivity of 0.16 S cm−1 at 550 °C, and shows hybrid H+/O2− conducting capability with predominant H+ conduction. Further investigation in terms of interface inspection manifests that oxygen vacancies are enriched at the hetero-interface between LZO and SDC, which gives rise to the high ionic conductivity of 5LZO-5SDC. Our study thus suggests the tremendous potentials of semiconductor ionic materials and indicates an effective way to develop fast ionic transport in electrolytes for low-temperature SOFCs.


Sign in / Sign up

Export Citation Format

Share Document