scholarly journals Cell Culture Adaptation of H3N2 Influenza Virus Impacts Acid Stability and Reduces Ferret Airborne Transmission

Author(s):  
Valerie Le Sage ◽  
Karen Kormuth ◽  
Eric Ntruibi ◽  
Juhye Lee ◽  
Sheila A Frizzell ◽  
...  

Airborne transmission of seasonal and pandemic influenza viruses is responsible for their epidemiological success and public health burden in humans. Efficient airborne transmission of H1N1 influenza virus relies on receptor specificity and pH of fusion of the surface glycoprotein hemagglutinin (HA). In this study, we examine the role of HA pH of fusion on transmissibility of a cell culture-adapted H3N2 virus. Mutations in the HA head at positions 78 and 212 of A/Perth/16/2009 (H3N2), which were selected after cell culture adaptation, decrease the acid stability of the virus from a pH of 5.5 (WT) to 5.8 (mutant). In addition, we observed that this mutant H3N2 virus replicated to higher titers in cell culture but had reduced airborne transmission in the ferret model. These data demonstrate that, like H1N1 HA, the pH of fusion for H3N2 HA is a determinant of efficient airborne transmission. Surprisingly, we demonstrate that the NA segment noncoding regions can impact the pH of fusion of reassortant viruses. Taken together, our data confirm that HA acid stability is an important characteristic of epidemiologically successful human influenza viruses and is influenced by HA/NA balance.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 719
Author(s):  
Valerie Le Sage ◽  
Karen A. Kormuth ◽  
Eric Nturibi ◽  
Juhye M. Lee ◽  
Sheila A. Frizzell ◽  
...  

Airborne transmission of seasonal and pandemic influenza viruses is the reason for their epidemiological success and public health burden in humans. Efficient airborne transmission of the H1N1 influenza virus relies on the receptor specificity and pH of fusion of the surface glycoprotein hemagglutinin (HA). In this study, we examined the role of HA pH of fusion on transmissibility of a cell-culture-adapted H3N2 virus. Mutations in the HA head at positions 78 and 212 of A/Perth/16/2009 (H3N2), which were selected after cell culture adaptation, decreased the acid stability of the virus from pH 5.5 (WT) to pH 5.8 (mutant). In addition, the mutant H3N2 virus replicated to higher titers in cell culture but had reduced airborne transmission in the ferret model. These data demonstrate that, like H1N1 HA, the pH of fusion for H3N2 HA is a determinant of efficient airborne transmission. Surprisingly, noncoding regions of the NA segment can impact the pH of fusion of mutant viruses. Taken together, our data confirm that HA acid stability is an important characteristic of epidemiologically successful human influenza viruses and is influenced by HA/NA balance.


1999 ◽  
Vol 73 (10) ◽  
pp. 8095-8103 ◽  
Author(s):  
Christopher F. Basler ◽  
Adolfo García-Sastre ◽  
Peter Palese

ABSTRACT The influenza virus neuraminidase (NA) is a tetrameric, virus surface glycoprotein possessing receptor-destroying activity. This enzyme facilitates viral release and is a target of anti-influenza virus drugs. The NA structure has been extensively studied, and the locations of disulfide bonds within the NA monomers have been identified. Because mutation of cysteine residues in other systems has resulted in temperature-sensitive (ts) proteins, we asked whether mutation of cysteine residues in the influenza virus NA would yield ts mutants. The ability to rationally design tight and stable ts mutations could facilitate the creation of efficient helper viruses for influenza virus reverse genetics experiments. We generated a series of cysteine-to-glycine mutants in the influenza A/WSN/33 virus NA. These were assayed for neuraminidase activity in a transient expression system, and active mutants were rescued into infectious virus by using established reverse genetics techniques. Mutation of two cysteines not involved in intrasubunit disulfide bonds, C49 and C146, had modest effects on enzymatic activity and on viral replication. Mutation of two cysteines, C303 and C320, which participate in a single disulfide bond located in the β5L0,1 loop, produced ts enzymes. Additionally, the C303G and C320G transfectant viruses were found to be attenuated and ts. Because both the C303G and C320G viruses exhibited stable ts phenotypes, they were tested as helper viruses in reverse genetics experiments. Efficiently rescued were an N1 neuraminidase from an avian H5N1 virus, an N2 neuraminidase from a human H3N2 virus, and an N7 neuraminidase from an H7N7 equine virus. Thus, these cysteine-to-glycine NA mutants allow the rescue of a variety of wild-type and mutant NAs into influenza virus.


2012 ◽  
Vol 87 (3) ◽  
pp. 1400-1410 ◽  
Author(s):  
Donald M. Carter ◽  
Chalise E. Bloom ◽  
Eduardo J. M. Nascimento ◽  
Ernesto T. A. Marques ◽  
Jodi K. Craigo ◽  
...  

ABSTRACTIndividuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 793
Author(s):  
Ying Huang ◽  
Monique S. França ◽  
James D. Allen ◽  
Hua Shi ◽  
Ted M. Ross

Vaccination is the best way to prevent influenza virus infections, but the diversity of antigenically distinct isolates is a persistent challenge for vaccine development. In order to conquer the antigenic variability and improve influenza virus vaccine efficacy, our research group has developed computationally optimized broadly reactive antigens (COBRAs) in the form of recombinant hemagglutinins (rHAs) to elicit broader immune responses. However, previous COBRA H1N1 vaccines do not elicit immune responses that neutralize H1N1 virus strains in circulation during the recent years. In order to update our COBRA vaccine, two new candidate COBRA HA vaccines, Y2 and Y4, were generated using a new seasonal-based COBRA methodology derived from H1N1 isolates that circulated during 2013–2019. In this study, the effectiveness of COBRA Y2 and Y4 vaccines were evaluated in mice, and the elicited immune responses were compared to those generated by historical H1 COBRA HA and wild-type H1N1 HA vaccines. Mice vaccinated with the next generation COBRA HA vaccines effectively protected against morbidity and mortality after infection with H1N1 influenza viruses. The antibodies elicited by the COBRA HA vaccines were highly cross-reactive with influenza A (H1N1) pdm09-like viruses isolated from 2009 to 2021, especially with the most recent circulating viruses from 2019 to 2021. Furthermore, viral loads in lungs of mice vaccinated with Y2 and Y4 were dramatically reduced to low or undetectable levels, resulting in minimal lung injury compared to wild-type HA vaccines following H1N1 influenza virus infection.


2016 ◽  
Vol 113 (12) ◽  
pp. E1701-E1709 ◽  
Author(s):  
Richard A. Neher ◽  
Trevor Bedford ◽  
Rodney S. Daniels ◽  
Colin A. Russell ◽  
Boris I. Shraiman

Human seasonal influenza viruses evolve rapidly, enabling the virus population to evade immunity and reinfect previously infected individuals. Antigenic properties are largely determined by the surface glycoprotein hemagglutinin (HA), and amino acid substitutions at exposed epitope sites in HA mediate loss of recognition by antibodies. Here, we show that antigenic differences measured through serological assay data are well described by a sum of antigenic changes along the path connecting viruses in a phylogenetic tree. This mapping onto the tree allows prediction of antigenicity from HA sequence data alone. The mapping can further be used to make predictions about the makeup of the future A(H3N2) seasonal influenza virus population, and we compare predictions between models with serological and sequence data. To make timely model output readily available, we developed a web browser-based application that visualizes antigenic data on a continuously updated phylogeny.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 133 ◽  
Author(s):  
Magen E. Francis ◽  
Mara McNeil ◽  
Nicholas J. Dawe ◽  
Mary K. Foley ◽  
Morgan L. King ◽  
...  

Influenza virus imprinting is now understood to significantly influence the immune responses and clinical outcome of influenza virus infections that occur later in life. Due to the yearly cycling of influenza viruses, humans are imprinted with the circulating virus of their birth year and subsequently build a complex influenza virus immune history. Despite this knowledge, little is known about how the imprinting strain influences vaccine responses. To investigate the immune responses of the imprinted host to split-virion vaccination, we imprinted ferrets with a sublethal dose of the historical seasonal H1N1 strain A/USSR/90/1977. After a +60-day recovery period to build immune memory, ferrets were immunized and then challenged on Day 123. Antibody specificity and recall were investigated throughout the time course. At challenge, the imprinted vaccinated ferrets did not experience significant disease, while naïve-vaccinated ferrets had significant weight loss. Haemagglutination inhibition assays showed that imprinted ferrets had a more robust antibody response post vaccination and increased virus neutralization activity. Imprinted-vaccinated animals had increased virus-specific IgG antibodies compared to the other experimental groups, suggesting B-cell maturity and plasticity at vaccination. These results should be considered when designing the next generation of influenza vaccines.


2020 ◽  
Author(s):  
Danqi Bao ◽  
Ruixue Xue ◽  
Min Zhang ◽  
Chenyang Lu ◽  
Tianxin Ma ◽  
...  

Neuraminidase (NA) has multiple functions in the life cycle of influenza virus, especially in the late stage of virus replication. Both of Hemagglutinin (HA) and NA are highly glycosylated proteins. N-linked glycosylation (NLG) of HA has been reported to contribute to immune escape and virulence of influenza viruses. However, the function of NLG of NA remains largely unclear. In this study, we found that NLG is critical for budding ability of NA. Tunicamycin treatment or NLG knock-out significantly inhibited the budding of NA. Further studies showed that the NLG knock-out caused attenuation of virus in vitro and in vivo. Notably the NLG at 219 position plays an important role in budding, replication, and virulence of H1N1 influenza virus. To explore the underlying mechanism, unfolded protein response (UPR) was determined in NLG knock-out NA overexpressed cells, which showed that the mutant NA was mainly located in ER, and the UPR markers BIP and p-eIF2α were upregulated, and XBP1 was downregulated. All the results indicated that NLG knock-out NA was stacked in ER and triggered UPR, which might shut down the budding process of NA. Overall, the study shed light on the function of NLG of NA in virus replication and budding. IMPORTANCE NA is a highly glycosylated protein. Nevertheless, how the NLG affects the function of NA protein remains largely unclear. In this study, we found that NLG plays important roles in budding and Neuraminidase activity of NA protein. Loss of NLG attenuated viral budding and replication. Especially the 219 NLG site mutation significantly attenuated the replication and virulence of H1N1 influenza virus in vitro and in vivo, which suggested that NLG of NA protein is a novel virulence marker for influenza viruses.


2010 ◽  
Vol 17 (12) ◽  
pp. 1998-2006 ◽  
Author(s):  
Ali H. Ellebedy ◽  
Thomas P. Fabrizio ◽  
Ghazi Kayali ◽  
Thomas H. Oguin ◽  
Scott A. Brown ◽  
...  

ABSTRACT Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8+ cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans.


2015 ◽  
Vol 90 (2) ◽  
pp. 1116-1128 ◽  
Author(s):  
Greg A. Kirchenbaum ◽  
Donald M. Carter ◽  
Ted M. Ross

ABSTRACTBroadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus.IMPORTANCEThe influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts.


Sign in / Sign up

Export Citation Format

Share Document