scholarly journals On the Concept of Gravito-Rotational Acceleration and its Consequences for Compact Stellar Objects

Author(s):  
Mohamed Elmansour Hassani

In a previous series of papers relating to the Combined Gravitational Action (CGA), we have exclusively studied orbital motion without spin. In the present paper, we apply CGA to any self-rotating material body, i.e., an axially spinning massive object, which itself may be locally seen as a gravito-rotational source because it is capable of generating the gravito-rotational acceleration, which seems to be unknown to previously existing theories of gravity. The consequences of such an acceleration are very interesting, particularly for Compact Stellar Objects. Independently of the equation of state, it is found that the minimum radius of a stable neutron star is three times its gravitational radius, Rmin = 3GMNS/c2, and its critical and maximum internal magnetic field strength cannot exceed the value of 3×1018 G.

Author(s):  
Mohamed Hassani

In a previous series of papers relating to the Combined Gravitational Action (CGA), we have exclusively studied orbital motion without spin. In the present paper, we apply CGA to any self-rotating material body, i.e., an axially spinning massive object, which itself may be locally seen as a gravito-rotational source because it is capable of generating the gravito-rotational acceleration, which seems to be unknown to previously existing theories of gravity. The consequences of such an acceleration are very interesting, particularly for Compact Stellar Objects. Independently of the equation of state, it is found that the critical and maximum internal magnetic field strength of a stable neutron star cannot exceed the value of 3x1018G.


1975 ◽  
Vol 67 ◽  
pp. 497-497
Author(s):  
G. S. Bisnovatyi-Kogan ◽  
B. V. Komberg

A model for the double system with the X-ray source Her X-1 is considered. It is supposed that the central star has a sufficiently strong magnetic field for the outflow of the matter to occur in jets. When the neutron star is in the jet the optical depth τx attributable to the X-ray emission due to Compton scattering is greater than unity and the solid angle of the emitted X-radiation is broad, ∼ 180°. In the opposite case, τx < 1, there is a narrow angle of emission and the radiation falls on to the star and is not observed on the Earth. The motion of the neutron star relative to the jet is due to nonsynchronization between the orbital motion and rotation of the central star. If the duration of the whole orbit around the central star is 35 days and the dimension of the jet is about 1/3 of the orbit, then such a model explains features connected with the 35-day cycle.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Vladimir V. Skobelev

Necessary condition forβ-decay suppression of a neutron in degenerate magnetized electron gas is formulated. Based on this, it is shown that, in superstrong magnetic field, equilibrium radius of a neutron star is approximately several times smaller than without the field influence. Therefore, we can make a prediction that in short-period pulsars, such fields can be observed. In fact, possible existence of new class of stellar objects is noted, the objects with superstrong magnetic field and supersmall radius about 1 km which we namedminimagnetars. They can be detected by gravitational red shift of their radiation.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850083 ◽  
Author(s):  
Ritam Mallick ◽  
Amit Singh

In this paper, we present the effect of a strong magnetic field in the burning of a neutron star (NS). We have used relativistic magneto-hydrostatic (MHS) conservation equations for studying the PT from nuclear matter (NM) to quark matter (QM). We found that the shock-induced phase transition (PT) is likely if the density of the star core is more than three times nuclear saturation ([Formula: see text]) density. The conversion process from NS to quark star (QS) is found to be an exothermic process beyond such densities. The burning process at the star center most likely starts as a deflagration process. However, there can be a small window at lower densities where the process can be a detonation one. At small enough infalling matter velocities the resultant magnetic field of the QS is lower than that of the NS. However, for a higher value of infalling matter velocities, the magnetic field of QM becomes larger. Therefore, depending on the initial density fluctuation and on whether the PT is a violent one or not the QS could be more magnetic or less magnetic. The PT also have a considerable effect on the tilt of the magnetic axis of the star. For smaller velocities and densities the magnetic angle are not affected much but for higher infalling velocities tilt of the magnetic axis changes suddenly. The magnetic field strength and the change in the tilt axis can have a significant effect on the observational aspect of the magnetars.


1977 ◽  
Vol 43 ◽  
pp. 34-34
Author(s):  
W. Pietsch ◽  
C. Reppin ◽  
R. Staubert ◽  
J. Truemper ◽  
W. Voges ◽  
...  

A four hour balloon observation of HERC X-l during the 'On-state' in the 35 day cycle was performed on May 3rd, 1976. The 1.24 second pulsations show a pulsed fraction of 58 ± 8% in the 18-31 KeV interval. A pulsed flux (1.24 sec) was discovered in the 31-88 KeV interval with a pulsed fraction of 51 ± 14%. The spectrum of the pulsed flux can be represented up to 50 KeV by an exponential distribution with KT approximately 8 KeV. At approximately 58 KeV a strong and narrow line feature occurs which we interpret as electron cyclotron emission (ΔN = 1 Landau transition) from the polar cap plasma of the rotating neutron star. The corresponding magnetic field strength is approximately 5 x 1012 Gauss, neglecting gravitational red shift. There is evidence for a second harmonic at approximately 110 KeV (ΔN = 2 ).The astrophysical application of this discovery will be discussed in some detail.


2016 ◽  
Vol 94 (2) ◽  
Author(s):  
Kalin V. Staykov ◽  
K. Yavuz Ekşi ◽  
Stoytcho S. Yazadjiev ◽  
M. Metehan Türkoğlu ◽  
A. Savaş Arapoğlu

Sign in / Sign up

Export Citation Format

Share Document