scholarly journals Forest Fire Recognition Based on GNN With Dynamic Feature Similarity of Multi-View Images

Author(s):  
Lin Zhang ◽  
Mingyang Wang ◽  
Yunhong Ding

Forest fire identification is important for forest resource protection. Effective monitoring of forest fires requires the deployment of multiple monitors with different viewpoints, while most traditional recognition models can only effectively recognize images from a single source, often because they ignore the correlation information between images from different viewpoints, resulting in inaccurate visual similarity estimation for multiple source samples and generating the problems of missed and high false alarm rates. In order to solve the problems, a similarity-guided graph neural network model based on the dynamic characteristics of images is proposed in this paper. The method converts the input features of the nodes on the graph into relational features of different gallery pairs by establishing pairs (nodes) that represent different viewpoint images and gallery images. The dynamic feature update of the image gallery using the new feature-bank relationship enables the estimation of the similarity between images and improves the image recognition rate of the model. Besides, to reduce the complicated pre-processing process and extract the key features in the images effectively, this paper also proposes a dynamic feature extraction method for fire regions based on image segment ability. By setting the threshold value of HSV color space, the fire region is segmented from the image and the fire region frames are calculated for dynamic feature extraction. The experimental results on the open-source forest fire dataset and our collected forest fire dataset show that the performance of the method in this paper is improved by 4% compared with Resnet, the theme during this paper may be tailored to totally different fire eventualities and has sensible generalization and interference resistance.

2021 ◽  
Vol 38 (3) ◽  
pp. 775-783
Author(s):  
Di Wu ◽  
Chunjiong Zhang ◽  
Li Ji ◽  
Rong Ran ◽  
Huaiyu Wu ◽  
...  

Forest fire recognition is important to the protection of forest resources. To effectively monitor forest fires, it is necessary to deploy multiple monitors from different angles. However, most of the traditional recognition models can only recognize single-source images. The neglection of multi-view images leads to a high false positive/negative rate. To improve the accuracy of forest fire recognition, this paper proposes a graph neural network (GNN) model based on the feature similarity of multi-view images. Specifically, the correlations (nodes) between multi-view images and library images were established to convert the input features of graph nodes into the correlation features between different images. Based on feature relationships, the image features in the library were updated to estimate the node similarity in the GNN model, improving the image recognition rate of our model. Furthermore, a fire area feature extraction method was designed based on image segmentation, aiming to simplify the complex preprocessing of images, and effectively extract the key features from images. By setting the threshold in the hue-saturation-value (HSV) color space, the fire area was extracted from the images, and the dynamic features were extracted from the continuous frames of the fire area. Experimental results show that our method recognized forest fires more effectively than the baselines, improving the recognition accuracy by 4%. In addition, the multi-source forest fire data experiment also confirms that our method could adapt to different forest fire scenes, and boast a strong generalization ability and anti-interference ability.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1509-1512
Author(s):  
Qing E Wu ◽  
Hong Wang ◽  
Li Fen Ding

To carry out an effective classification and recognition for target, this paper studied the target owned characteristics, discussed a decryption algorithm, gave a feature extraction method based on the decryption process, and extracted the feature of palmprint in region of interest. Moreover, this paper used the wavelet transform to extract the energy feature of target, gave an approach on matching and recognition to improve the correctness and efficiency of existing recognition approaches, and compared it with existing approaches of palmprint recognition by experiments. The experiment results show that the correct recognition rate of the approach in this paper is improved averagely by 2.34% than that of the existing recognition approaches.


2014 ◽  
Vol 568-570 ◽  
pp. 668-671
Author(s):  
Yi Long ◽  
Fu Rong Liu ◽  
Guo Qing Qiu

To address the problem that the dimension of the feature vector extracted by Local Binary Pattern (LBP) for face recognition is too high and Principal Component Analysis (PCA) extract features are not the best classification features, an efficient feature extraction method using LBP, PCA and Maximum scatter difference (MSD) has been introduced in this paper. The original face image is firstly divided into sub-images, then the LBP operator is applied to extract the histogram feature. and the feature dimensions are further reduced by using PCA. Finally,MSD is performed on the reduced PCA-based feature.The experimental results on ORL and Yale database demonstrate that the proposed method can classify more effectively and can get higher recognition rate than the traditional recognition methods.


2011 ◽  
Vol 211-212 ◽  
pp. 813-817 ◽  
Author(s):  
Jin Qing Liu ◽  
Qun Zhen Fan

In this paper, the purpose is to find a method that can be more suited to facial expression change and also improve the recognition rate. The proposed system contains three parts, wavelet transform, Fisher linear discriminant method feature extraction and face classification. The basic idea of the proposed method is that first extract the low-frequency components through wavelet transform, then the low-frequency images mapped into a low-dimensional space by PCA transform, and finally the utilization of LDA feature extraction method in low-dimensional space. The algorithms were tested on ORL and Yale face database, respectively. Experimental results shows that the proposed method not only improve the recognition rate, but also improve the recognition speed. This method can effectively overcome the impact of expression changes on face recognition, and play a certain role in inhibition of expression.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 693 ◽  
Author(s):  
Zhaoxi Li ◽  
Yaan Li ◽  
Kai Zhang

To improve the feature extraction of ship-radiated noise in a complex ocean environment, fluctuation-based dispersion entropy is used to extract the features of ten types of ship-radiated noise. Since fluctuation-based dispersion entropy only analyzes the ship-radiated noise signal in single scale and it cannot distinguish different types of ship-radiated noise effectively, a new method of ship-radiated noise feature extraction is proposed based on fluctuation-based dispersion entropy (FDispEn) and intrinsic time-scale decomposition (ITD). Firstly, ten types of ship-radiated noise signals are decomposed into a series of proper rotation components (PRCs) by ITD, and the FDispEn of each PRC is calculated. Then, the correlation between each PRC and the original signal are calculated, and the FDispEn of each PRC is analyzed to select the Max-relative PRC fluctuation-based dispersion entropy as the feature parameter. Finally, by comparing the Max-relative PRC fluctuation-based dispersion entropy of a certain number of the above ten types of ship-radiated noise signals with FDispEn, it is discovered that the Max-relative PRC fluctuation-based dispersion entropy is at the same level for similar ship-radiated noise, but is distinct for different types of ship-radiated noise. The Max-relative PRC fluctuation-based dispersion entropy as the feature vector is sent into the support vector machine (SVM) classifier to classify and recognize ten types of ship-radiated noise. The experimental results demonstrate that the recognition rate of the proposed method reaches 95.8763%. Consequently, the proposed method can effectively achieve the classification of ship-radiated noise.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yuntao Zhao ◽  
Bo Bo ◽  
Yongxin Feng ◽  
ChunYu Xu ◽  
Bo Yu

With explosive growth of malware, Internet users face enormous threats from Cyberspace, known as “fifth dimensional space.” Meanwhile, the continuous sophisticated metamorphism of malware such as polymorphism and obfuscation makes it more difficult to detect malicious behavior. In the paper, based on the dynamic feature analysis of malware, a novel feature extraction method of hybrid gram (H-gram) with cross entropy of continuous overlapping subsequences is proposed, which implements semantic segmentation of a sequence of API calls or instructions. The experimental results show the H-gram method can distinguish malicious behaviors and is more effective than the fixed-length n-gram in all four performance indexes of the classification algorithms such as ID3, Random Forest, AdboostM1, and Bagging.


2011 ◽  
Vol 339 ◽  
pp. 571-574
Author(s):  
Xing Zhu Liang ◽  
Jing Zhao Li ◽  
Yu E Lin

Several orthogonal feature extraction algorithms based on local preserving projection have recently been proposed. However, these methods still are linear techniques in nature. In this paper, we present nonlinear feature extraction method called Kernel Orthogonal Neighborhood Preserving Discriminant Analysis (KONPDA). A major advantage of the proposed method is that it is regarded every column of the kernel matrix as a corresponding sample. Then running KONPDA in kernel matrix, nonlinear features can be extracted. Experimental results on ORL database indicate that the proposed KONPDA method achieves higher recognition rate than the ONPDA method and other kernel-based learning algorithms.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 624 ◽  
Author(s):  
Zhe Chen ◽  
Yaan Li ◽  
Renjie Cao ◽  
Wasiq Ali ◽  
Jing Yu ◽  
...  

Extracting useful features from ship-radiated noise can improve the performance of passive sonar. The entropy feature is an important supplement to existing technologies for ship classification. However, the existing entropy feature extraction methods for ship-radiated noise are less reliable under noisy conditions because they lack noise reduction procedures or are single-scale based. In order to simultaneously solve these problems, a new feature extraction method is proposed based on improved complementary ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), normalized mutual information (norMI), and multiscale improved permutation entropy (MIPE). Firstly, the ICEEMDAN is utilized to obtain a group of intrinsic mode functions (IMFs) from ship-radiated noise. The noise reduction process is then conducted by identifying and eliminating the noise IMFs. Next, the norMI and MIPE of the signal-dominant IMFs are calculated, respectively; and the norMI is used to weigh the corresponding MIPE result. The multi-scale entropy feature is finally defined as the sum of the weighted MIPE results. Experimental results show that the recognition rate of the proposed method achieves 90.67% and 83%, respectively, under noise free and 5 dB conditions, which is much higher than existing entropy feature extraction algorithms. Hence, the proposed method is more reliable and suitable for feature extraction of ship-radiated noise in practice.


Sign in / Sign up

Export Citation Format

Share Document