scholarly journals A Feature Extraction Method of Ship-Radiated Noise Based on Fluctuation-Based Dispersion Entropy and Intrinsic Time-Scale Decomposition

Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 693 ◽  
Author(s):  
Zhaoxi Li ◽  
Yaan Li ◽  
Kai Zhang

To improve the feature extraction of ship-radiated noise in a complex ocean environment, fluctuation-based dispersion entropy is used to extract the features of ten types of ship-radiated noise. Since fluctuation-based dispersion entropy only analyzes the ship-radiated noise signal in single scale and it cannot distinguish different types of ship-radiated noise effectively, a new method of ship-radiated noise feature extraction is proposed based on fluctuation-based dispersion entropy (FDispEn) and intrinsic time-scale decomposition (ITD). Firstly, ten types of ship-radiated noise signals are decomposed into a series of proper rotation components (PRCs) by ITD, and the FDispEn of each PRC is calculated. Then, the correlation between each PRC and the original signal are calculated, and the FDispEn of each PRC is analyzed to select the Max-relative PRC fluctuation-based dispersion entropy as the feature parameter. Finally, by comparing the Max-relative PRC fluctuation-based dispersion entropy of a certain number of the above ten types of ship-radiated noise signals with FDispEn, it is discovered that the Max-relative PRC fluctuation-based dispersion entropy is at the same level for similar ship-radiated noise, but is distinct for different types of ship-radiated noise. The Max-relative PRC fluctuation-based dispersion entropy as the feature vector is sent into the support vector machine (SVM) classifier to classify and recognize ten types of ship-radiated noise. The experimental results demonstrate that the recognition rate of the proposed method reaches 95.8763%. Consequently, the proposed method can effectively achieve the classification of ship-radiated noise.

Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 16
Author(s):  
Zhaoxi Li ◽  
Yaan Li ◽  
Kai Zhang ◽  
Jianli Guo

Entropy feature analysis is an important tool for the classification and identification of different types of ships. In order to improve the limitations of traditional feature extraction of ship-radiation noise in complex marine environments, we proposed a novel feature extraction method for ship-radiated noise based on improved intrinsic time-scale decomposition (IITD) and multiscale dispersion entropy (MDE). The proposed feature extraction technique is named IITD-MDE. IITD, as an improved algorithm, has more reliable performance than intrinsic time-scale decomposition (ITD). Firstly, five types of ship-radiated noise signals are decomposed into a series of intrinsic scale component (ISCs) by IITD. Then, we select the ISC with the main information through correlation analysis, and calculate the MDE value as a feature vector. Finally, the feature vector is input into the support vector machine (SVM) classifier to analyze and get classification. The experimental results demonstrate that the recognition rate of the proposed technique reaches 86% accuracy. Therefore, compared with the other feature extraction methods, the proposed method is able to classify the different types of ships effectively.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1079 ◽  
Author(s):  
Junxiong Wang ◽  
Zhe Chen

Extracting effective features from ship-radiated noise is an important way to improve the detection and recognition performance of passive sonar. Complexity features of ship-radiated noise have attracted increasing amounts of attention. However, the traditional definition of complexity based on entropy (information stored in the system) is not accurate. To this end, a new statistical complexity measure is proposed in this paper based on spectrum entropy and disequilibrium. Since the spectrum features are unique to the class of the ship, our method can distinguish different ships according to their location in the two-dimensional plane composed of complexity and spectrum entropy (CSEP). To weaken the influence of ocean ambient noise, the intrinsic time-scale decomposition (ITD) is applied to preprocess the data in this study. The effectiveness of the proposed method is validated through a classification experiment of four types of marine vessels. The recognition rate of the ITD-CSEP methodology achieved 94%, which is much higher than that of traditional feature extraction methods. Moreover, the ITD-CSEP is fast and parameter free. Hence, the method can be applied in the real time processing practical applications.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 468 ◽  
Author(s):  
Dongri Xie ◽  
Hamada Esmaiel ◽  
Haixin Sun ◽  
Jie Qi ◽  
Zeyad A. H. Qasem

Due to the complexity and variability of underwater acoustic channels, ship-radiated noise (SRN) detected using the passive sonar is prone to be distorted. The entropy-based feature extraction method can improve this situation, to some extent. However, it is impractical to directly extract the entropy feature for the detected SRN signals. In addition, the existing conventional methods have a lack of suitable de-noising processing under the presence of marine environmental noise. To this end, this paper proposes a novel feature extraction method based on enhanced variational mode decomposition (EVMD), normalized correlation coefficient (norCC), permutation entropy (PE), and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, EVMD is utilized to obtain a group of intrinsic mode functions (IMFs) from the SRN signals. The noise-dominant IMFs are then eliminated by a de-noising processing prior to PE calculation. Next, the correlation coefficient between each signal-dominant IMF and the raw signal and PE of each signal-dominant IMF are calculated, respectively. After this, the norCC is used to weigh the corresponding PE and the sum of these weighted PE is considered as the final feature parameter. Finally, the feature vectors are fed into the PSO-SVM multi-class classifier to classify the SRN samples. The experimental results demonstrate that the recognition rate of the proposed methodology is up to 100%, which is much higher than the currently existing methods. Hence, the method proposed in this paper is more suitable for the feature extraction of SRN signals.


The two diastolic heart sounds reflecting the malfunctionality of heart are third and fourth heartsounds(S3 and S4). Early detection of heart failures can decrease the risk by identifying the abnormal heart sounds through Phonocardiogram (PCG) signal analysis. In this paper abnormal heart sounds are identified and classified using Intrinsic time scale decomposition (ITD) and Support vector machine (SVM). The proposed framework has been tested on authenticated database signals under abnormal conditions. The success rate is really conquering for the SVM classifier with an accuracy over 94% in the S3 detection and 91% for the S4, which reveals the effectiveness and high efficiency of the proposed work


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 176 ◽  
Author(s):  
Guohui Li ◽  
Zhichao Yang ◽  
Hong Yang

To improve the recognition accuracy of ship-radiated noise, a feature extraction method based on regenerated phase-shifted sinusoid-assisted empirical mode decomposition (RPSEMD), mutual information (MI), and differential symbolic entropy (DSE) is proposed in this paper. RPSEMD is an improved empirical mode decomposition (EMD) that alleviates the mode mixing problem of EMD. DSE is a new tool to quantify the complexity of nonlinear time series. It not only has high computational efficiency, but also can measure the nonlinear complexity of short time series. Firstly, the ship-radiated noise is decomposed into a series of intrinsic mode functions (IMFs) by RPSEMD, and the DSE of each IMF is calculated. Then, the MI between each IMF and the original signal is calculated; the sum of MIs is taken as the denominator; and each normalized MI (norMI) is obtained. Finally, each norMI is used as the weight coefficient to weight the corresponding DSE, and the weighted DSE (WDSE) is obtained. The WDSEs are sent into the support vector machine (SVM) classifier to classify and recognize three types of ship-radiated noise. The experimental results demonstrate that the recognition rate of the proposed method reaches 98.3333%. Consequently, the proposed WDSE method can effectively achieve the classification of ships.


2021 ◽  
Vol 11 (6) ◽  
pp. 2719
Author(s):  
Jianpeng Ma ◽  
Guodong Chen ◽  
Chengwei Li ◽  
Liwei Zhan ◽  
Guang-Zhu Zhang

To overcome the difficulty of extracting the feature frequency of early bearing faults, this paper proposes an adaptive feature extraction scheme. First, the improved intrinsic time-scale decomposition, proposed in this paper, is used as a noise reduction method. Then, we use the adaptive composite quantum morphology analysis method, also proposed in this paper, to perform an adaptive demodulation analysis on the signal, and finally, extract the fault characteristics in the envelope spectrum. The experimental results show that the scheme performs well in the early fault feature extraction of rolling bearings.


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


2018 ◽  
Vol 10 (7) ◽  
pp. 1123 ◽  
Author(s):  
Yuhang Zhang ◽  
Hao Sun ◽  
Jiawei Zuo ◽  
Hongqi Wang ◽  
Guangluan Xu ◽  
...  

Aircraft type recognition plays an important role in remote sensing image interpretation. Traditional methods suffer from bad generalization performance, while deep learning methods require large amounts of data with type labels, which are quite expensive and time-consuming to obtain. To overcome the aforementioned problems, in this paper, we propose an aircraft type recognition framework based on conditional generative adversarial networks (GANs). First, we design a new method to precisely detect aircrafts’ keypoints, which are used to generate aircraft masks and locate the positions of the aircrafts. Second, a conditional GAN with a region of interest (ROI)-weighted loss function is trained on unlabeled aircraft images and their corresponding masks. Third, an ROI feature extraction method is carefully designed to extract multi-scale features from the GAN in the regions of aircrafts. After that, a linear support vector machine (SVM) classifier is adopted to classify each sample using their features. Benefiting from the GAN, we can learn features which are strong enough to represent aircrafts based on a large unlabeled dataset. Additionally, the ROI-weighted loss function and the ROI feature extraction method make the features more related to the aircrafts rather than the background, which improves the quality of features and increases the recognition accuracy significantly. Thorough experiments were conducted on a challenging dataset, and the results prove the effectiveness of the proposed aircraft type recognition framework.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


2014 ◽  
Vol 14 (04) ◽  
pp. 1450046 ◽  
Author(s):  
WENYING ZHANG ◽  
XINGMING GUO ◽  
ZHIHUI YUAN ◽  
XINGHUA ZHU

Analysis of heart sound is of great importance to the diagnosis of heart diseases. Most of the feature extraction methods about heart sound have focused on linear time-variant or time-invariant models. While heart sound is a kind of highly nonstationary and nonlinear vibration signal, traditional methods cannot fully reveal its essential properties. In this paper, a novel feature extraction approach is proposed for heart sound classification and recognition. The ensemble empirical mode decomposition (EEMD) method is used to decompose the heart sound into a finite number of intrinsic mode functions (IMFs), and the correlation dimensions of the main IMF components (IMF1~IMF4) are calculated as feature set. Then the classical Binary Tree Support Vector Machine (BT-SVM) classifier is employed to classify the heart sounds which include the normal heart sounds (NHSs) and three kinds of abnormal signals namely mitral stenosis (MT), ventricular septal defect (VSD) and aortic stenosis (AS). Finally, the performance of the new feature set is compared with the correlation dimensions of original signals and the main IMF components obtained by the EMD method. The results showed that, for NHSs, the feature set proposed in this paper performed the best with recognition rate of 98.67%. For the abnormal signals, the best recognition rate of 91.67% was obtained. Therefore, the proposed feature set is more superior to two comparative feature sets, which has potential application in the diagnosis of cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document