scholarly journals Development and Analysis of the Novel Hybridization of a Single Flash Geothermal Power Plant with Biomass Driven sCO2-steam Rankine Combined Cycle

Author(s):  
Balkan Mutlu ◽  
Derek Baker ◽  
Feyza Kazanç

This study investigates the hybridization scenario of a single flash geothermal power plant with a biomass driven sCO2-steam Rankine combined cycle where a solid local biomass source, olive residue, is used as a fuel. The hybrid power plant is modeled using the simulation software EB-SILON®Professional. A topping sCO2 cycle is specifically chosen for its potential for flexible elec-tricity generation. A synergy between the topping sCO2 and bottoming steam Rankine cycles is achieved by a good temperature match between the coupling heat exchanger where the waste heat from the topping cycle is utilized in the bottoming cycle. The high temperature heat addition problem common sCO2 cycles is also eliminated by utilizing the heat in the flue gas in the bottoming cycle. Combined cycle thermal efficiency and biomass to electricity conversion efficiency of 24.9% and 22.4% are achieved, respectively. The corresponding fuel consumption of the hybridized plant is found as 2.2 kg/s.

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 766
Author(s):  
Balkan Mutlu ◽  
Derek Baker ◽  
Feyza Kazanç

This study investigates the hybridization scenario of a single-flash geothermal power plant with a biomass-driven sCO2-steam Rankine combined cycle, where a solid local biomass source, olive residue, is used as a fuel. The hybrid power plant is modeled using the simulation software EBSILON®Professional. A topping sCO2 cycle is chosen due to its potential for flexible electricity generation. A synergy between the topping sCO2 and bottoming steam Rankine cycles is achieved by a good temperature match between the coupling heat exchanger, where the waste heat from the topping cycle is utilized in the bottoming cycle. The high-temperature heat addition problem, common in sCO2 cycles, is also eliminated by utilizing the heat in the flue gas in the bottoming cycle. Combined cycle thermal efficiency and a biomass-to-electricity conversion efficiency of 24.9% and 22.4% are achieved, respectively. The corresponding fuel consumption of the hybridized plant is found to be 2.2 kg/s.


2016 ◽  
Vol 63 (6) ◽  
pp. 409-413 ◽  
Author(s):  
G. V. Tomarov ◽  
A. A. Shipkov ◽  
A. I. Nikol’skii ◽  
V. N. Semenov

Author(s):  
S. Barsin ◽  
K. Aung

The present work investigates thermodynamic optimum conditions with respect to resource utilization by varying the operating pressure of flash drum for an existing geothermal power plant. The main focus of the study is to maximize the power output by minimizing the waste of liquid geothermal fluid re-injected to the well. For this purpose a double-flash system has been incorporated and the effect of operating at optimum flash pressures for both primary and secondary flash units is studied. An economic model is developed that calculates the total capital investment based on the cost of major equipments including pumps, flash drums, turbine generators, and condensers. From the results obtained it can be concluded that the plant at Svartsengi currently is working close to the optimum flashing pressure for the single-flash geothermal power plant. Providing an additional flash unit to convert the high temperature liquid coming from primary flash for Svartsengi and Nevada power plants increases the net power output by 12.7% and 28.9% respectively.


2018 ◽  
Author(s):  
Joshua Dominic P. McTigue ◽  
Nicholas D. Kincaid ◽  
Guangdong Zhu ◽  
Daniel Wendt ◽  
Joshua Gunderson ◽  
...  

1999 ◽  
Vol 121 (4) ◽  
pp. 295-301 ◽  
Author(s):  
M. Kanog˘lu ◽  
Y. A. C¸engel

Performance evaluation of a 12.8-MW single-flash design geothermal power plant in Northern Nevada is conducted using actual plant operating data, and potential improvement sites are identified. The unused geothermal brine reinjected back to the ground is determined to represent about 50 percent of the energy and 40 percent of the exergy available in the reservoir. The first and second-law efficiencies of the plant are determined to be 6 percent and 22 percent, respectively. Optimizing the existing single-flash system is shown to increase the net power output by up to 4 percent. Some well-known geothermal power generation technologies including double-flash, binary, and combined flash/binary designs as alternative to the existing system are evaluated and their optimum operating conditions are determined. It is found that a double-flash design, a binary design, and a combined flash/binary design can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.


Sign in / Sign up

Export Citation Format

Share Document