Performance Enhancement of Single Flash Geothermal Power Plants

Author(s):  
S. Barsin ◽  
K. Aung

The present work investigates thermodynamic optimum conditions with respect to resource utilization by varying the operating pressure of flash drum for an existing geothermal power plant. The main focus of the study is to maximize the power output by minimizing the waste of liquid geothermal fluid re-injected to the well. For this purpose a double-flash system has been incorporated and the effect of operating at optimum flash pressures for both primary and secondary flash units is studied. An economic model is developed that calculates the total capital investment based on the cost of major equipments including pumps, flash drums, turbine generators, and condensers. From the results obtained it can be concluded that the plant at Svartsengi currently is working close to the optimum flashing pressure for the single-flash geothermal power plant. Providing an additional flash unit to convert the high temperature liquid coming from primary flash for Svartsengi and Nevada power plants increases the net power output by 12.7% and 28.9% respectively.

1999 ◽  
Vol 121 (4) ◽  
pp. 295-301 ◽  
Author(s):  
M. Kanog˘lu ◽  
Y. A. C¸engel

Performance evaluation of a 12.8-MW single-flash design geothermal power plant in Northern Nevada is conducted using actual plant operating data, and potential improvement sites are identified. The unused geothermal brine reinjected back to the ground is determined to represent about 50 percent of the energy and 40 percent of the exergy available in the reservoir. The first and second-law efficiencies of the plant are determined to be 6 percent and 22 percent, respectively. Optimizing the existing single-flash system is shown to increase the net power output by up to 4 percent. Some well-known geothermal power generation technologies including double-flash, binary, and combined flash/binary designs as alternative to the existing system are evaluated and their optimum operating conditions are determined. It is found that a double-flash design, a binary design, and a combined flash/binary design can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.


Author(s):  
Obumneme Oken

Surface phenomena that signal the presence of viable geothermal energy can be found in various locations in Nigeria. None of these locations have been explored extensively to determine the feasibility of sustainable geothermal energy development for electricity generation or direct heating purposes. In this context, the present study aims to provide insight into the energy potential of such development based on the enthalpy estimation of geothermal reservoirs. This particular project was conducted to determine the power output from a geothermal resource given an estimated enthalpy of the geothermal fluid. The process route chosen for this project is the single-flash geothermal power plant because of the temperature (180℃) and unique property of the geothermal fluid (a mixture of hot water and steam that exists as a liquid under high pressure). The Ikogosi warm spring in Ekiti State, Nigeria was chosen as the site location for this power plant. To support food security efforts in Africa, this project proposes the cascading of a hot water stream from the flash tank to serve direct heat purposes in agriculture for food preservation, before re-injection to the reservoir. The flowrate of the geothermal fluid to the flash separator was chosen as 3125 tonnes/hr. The power output from a single well using a single flash geothermal plant was evaluated to be 11.3 MW*. This result was obtained by applying basic thermodynamic principles, including material balance, energy balance, and enthalpy calculations. This particular project is a prelude to a robust model that will accurately determine the power capacity of geothermal power plants based on the enthalpy of geothermal fluid, size of the geothermal resource, and different plant designs. I hope that the knowledge gained from the study will promote best practices in geothermal engineering and emphasize appropriate planning for, and implementation of, geothermal plants.


Author(s):  
Obumneme Oken

Nigeria has some surface phenomena that indicate the presence of viable geothermal energy. None of these locations have been explored extensively to determine the feasibility of sustainable geothermal energy development for electricity generation or direct heating. In this context, the present study aims to provide insight into the energy potential of such development based on the enthalpy estimation of geothermal reservoirs. This particular project was conducted to determine the amount of energy that can be gotten from a geothermal reservoir for electricity generation and direct heating based on the estimated enthalpy of the geothermal fluid. The process route chosen for this project is the single-flash geothermal power plant because of the temperature (180℃) and unique property of the geothermal fluid (a mixture of hot water and steam that exists as a liquid under high pressure). The Ikogosi warm spring in Ekiti State, Nigeria was chosen as the site location for this power plant. To support food security efforts in Africa, this project proposes the cascading of a hot water stream from the flash tank to serve direct heat purposes in agriculture for food preservation, before re-injection to the reservoir. The flowrate of the geothermal fluid to the flash separator was chosen as 3125 tonnes/hr. The power output from a single well using a single flash geothermal plant was evaluated to be 11.3 MW*. This result was obtained by applying basic thermodynamic principles, including material balance, energy balance, and enthalpy calculations. This particular project is a prelude to a robust model that will accurately determine the power capacity of geothermal power plants based on the enthalpy of fluid and different plant designs.


2006 ◽  
Vol 129 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Ahmet Dagdas

One of the most important cycles for electricity generation from geothermal energy is the double-flash cycle. Approximately 25% of the total geothermal based electricity generation all over the world comes from double-flash geothermal power plants. In this paper, performance analysis of a hypothetical double-flash geothermal power plant is performed and variations of fundamental characteristics of the plant are examined. In the performance analysis, initially, optimum flashing pressures are determined, and energy and exergy values of the base points of the plant are calculated. In addition, first and second law efficiencies of the power plant are calculated. Main exergy destruction locations are determined and these losses are illustrated in an exergy flow diagram. For these purposes, it is assumed that a hypothetical double-flash geothermal power plant is constructed in the conditions of western Turkey. The geothermal field where the power plant will be built produces geofluid at a temperature of 210°C and a mass flow rate of 200kg∕s. According to simulation results, it is possible to produce 11,488kWe electrical power output in this field. Optimum first and second flashing pressures are determined to be 530kPa and 95kPa, respectively. Based on the exergy of the geothermal fluid at reservoir, overall first and second law efficiencies of the power plant are also calculated to be 6.88% and 28.55%, respectively.


2020 ◽  
Author(s):  
Paolo Basile ◽  
Roberto Brogi ◽  
Favaro Lorenzo ◽  
Tiziana Mazzoni

<p><span><span>Social consensus is a </span><span>condition precedent for any intervention having an impact on the territory, such as geothermal power plants. Therefore, private investors studied and proposed innovative solution for the exploitation of the medium enthalpy geothermal resource, with “zero emissions” in atmosphere, with the target of minimizing its environmental impact. “Montenero” project, developed by GESTO Italia, complies with this precondition.</span></span></p><p><span><span>The area covered b</span><span>y the exploration and exploitation permit is located on the northern edge of the great geothermal anomaly of Mt. Amiata (Tuscany), about 10 km north of the geothermal field of Bagnore, included in the homonymous Concession of Enel Green Power.</span></span></p><p><span><span>The geological - structural setting of the area around the inactive volc</span><span>ano of Mt. Amiata has been characterized by researches for the geothermal field of Bagnore, carried out by Enel Green Power over the years. The geothermal reservoir is present in the limestone and evaporitic rocks of the “Falda Toscana”, below which stands the Metamorphic Basement, as testified by the wells of geothermal field of Bagnore. The foreseen reservoir temperature at the target depth of 1.800 m is 140 °C, with an incondensable gas content of 1,8% by weight.</span></span></p><p><span><span>The project was presented to the authorities in 2013 and it is </span><span>now undergoing exploitation authorization and features the construction of a 5 MW ORC (Organic Ranking Circle) binary power plant. The plant is fed by three production wells for a total mass flow rate of 700 t/h. The geothermal fluid is pumped by three ESPs (Electrical Submersible Pump) keeping the geothermal fluid in liquid state from the extraction through the heat exchangers to its final reinjection three wells.</span></span></p><p><span><span>The reinjection temperature is 70 °C and the circuit pressure is maintained above the </span><span>incondensable gas bubble pressure, i.e. 40 bar, condition which prevents also the formation of calcium carbonate scaling. The confinement of the geothermal fluid in a “closed loop system” is an important advantage from the environmental point of view: possible pollutants presented inside the geothermal fluid are not released into the environment and are directly reinjected in geothermal reservoir.</span></span></p><p><span><span>The </span><span>environmental authorization procedure (obtained) has taken into account all the environmental aspects concerning the natural matrices (air, water, ground, ...) potentially affected by the activities needed for the development, construction and operation of “Montenero” ORC geothermal power plant. A numerical modeling was designed and applied in order to estimate the effect of the cultivation activity and to assess the reinjection overpressure (seismic effect evaluation). The project also follows the “best practices” implemented in Italy by the “Guidelines for the usage of medium and high enthalpy geothermal resources” prepared in cooperation between the Ministry of Economic Development and the Ministry of the Environment.</span></span></p>


Tatapani Geothermal field is one of the most promising low-enthalpy geothermal fields in central India, located on Son-Narmada lineament in the state of Chhattisgarh, India. The Tatapani geothermal field geological, geo-chemical & reservoir data has been compiled and analysed for evaluating true power potential & better understanding of the field. The low enthalpy geothermal reservoirs can be utilized for power production using Organic Rankine Cycle (ORC) or binary power cycle. Based on previous research works done, the Tatapani geothermal field has been found to be very prospective and has got huge potential for power generation. The binary power cycle has been studied in detail along with thermodynamic concepts. In addition, similar low enthalpy geothermal power plants (conceptual & existing both) have been thoroughly studied in order to understand the concepts and methodology to perform technical feasibility based on thermodynamic and exergy analysis. The literature review covers the previous works done on Tatapani geothermal field including works on other geothermal fields in India along with previous research works for Thermodynamic & Exergy Analysis carried-out for binary geothermal power plants across the world for similar low enthalpy prospects. The methods of performing thermodynamic and exergy analysis for a potential geothermal power plant has been studied and compared. Exergy analysis highlights the areas of primary exergy destruction at various plant components and can be illustrated in the form of exergy flow diagram. The loss of exergy indicates the potential reasons for the inefficiencies within a process and exergic efficiency as conversion of input heat energy from the brine in to useful work output. The exergic efficiencies can be calculated for each component along with exergy destruction. The detailed study has been conducted in order to gather the knowledge regarding conducting the feasibility of setting up binary geothermal power plant at Tatapani from technical point of view using thermodynamic concepts.


Sign in / Sign up

Export Citation Format

Share Document