scholarly journals Geometric Basis of Action Potential of Skeletal Muscle Cells

Author(s):  
Qing Li

Abstract Although we know something about single cell neuromuscular junction, It is still mysterious how multiple skeletal muscle cells coordinate to complete the intricate spatial curve movement. Here I propose a hypothesis that skeletal muscle cell populations with action potentials are alligned according to a curved manifolds on space(a curved shape on space) and the skeletal muscle also moves according to this corresponding shape(manifolds) when an specific motor nerve impulses are transmitted. the action potential of motor nerve fibers has the characteristics of time curve manifold and this time manifold curve of motor nerve fibers come from visual cortex in which a spatial geometric manifolds are formed within the synaptic connection of neurons. This spatial geometric manifolds of the synaptic connection of neurons orginate from spatial geometric manifolds in outside nature that are transmitted to brain through the cone cells and ganglion cells of the retina.Further,the essence of life is that life is an object that can move autonomously and the essence of life's autonomous movement is the movement of proteins. theoretically, due to the infinite diversity of geometric manifold shapes in nature, the arrangement and combination of 20 amino acids should have infinite diversity, and the geometric manifold formed by protein three-dimensional spatial structure should also have infinite diversity.

2004 ◽  
Vol 78 (13) ◽  
pp. 6792-6798 ◽  
Author(s):  
Ellyn R. Mulcahy ◽  
Jason C. Bartz ◽  
Anthony E. Kincaid ◽  
Richard A. Bessen

ABSTRACT The presence of the prion agent in skeletal muscle is thought to be due to the infection of nerve fibers located within the muscle. We report here that the pathological isoform of the prion protein, PrPSc, accumulates within skeletal muscle cells, in addition to axons, in the tongue of hamsters following intralingual and intracerebral inoculation of the HY strain of the transmissible mink encephalopathy agent. Localization of PrPSc to the neuromuscular junction suggests that this synapse is a site for prion agent spread between motor axon terminals and muscle cells. Following intracerebral inoculation, the majority of PrPSc in the tongue was found in the lamina propria, where it was associated with sensory nerve fibers in the core of the lingual papillae. PrPSc staining was also identified in the stratified squamous epithelium of the lingual mucosa. These findings indicate that prion infection of skeletal muscle cells and the epithelial layer in the tongue can be established following the spread of the prion agent from nerve terminals and/or axons that innervate the tongue. Our data suggest that ingestion of meat products containing prion-infected tongue could result in human exposure to the prion agent, while sloughing of prion-infected epithelial cells at the mucosal surface of the tongue could be a mechanism for prion agent shedding and subsequent prion transmission in animals.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
II Ezeigbo ◽  
C Wheeler-Jones ◽  
S Gibbons ◽  
ME Cleasby

2018 ◽  
Author(s):  
S Höckele ◽  
P Huypens ◽  
C Hoffmann ◽  
T Jeske ◽  
M Hastreiter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document