Faculty Opinions recommendation of Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control.

Author(s):  
Peter Taylor
2005 ◽  
Vol 7 (3) ◽  
pp. 286-294 ◽  
Author(s):  
Mickaël Ohanna ◽  
Andrew K. Sobering ◽  
Thomas Lapointe ◽  
Lazaro Lorenzo ◽  
Christophe Praud ◽  
...  

1995 ◽  
Vol 108 (9) ◽  
pp. 2973-2981 ◽  
Author(s):  
M. Zeschnigk ◽  
D. Kozian ◽  
C. Kuch ◽  
M. Schmoll ◽  
A. Starzinski-Powitz

Cadherins are a gene family encoding calcium-dependent cell adhesion proteins which are thought to act in the establishment and maintenance of tissue organization. M-cadherin, one member of the family, has been found in myogenic cells of somitic origin during embryogenesis and in the adult. These findings have suggested that M-cadherin is involved in the regulation of morphogenesis of skeletal muscle cells. Therefore, we investigated the function of M-cadherin in the fusion of myoblasts into myotubes (terminal differentiation) in cell culture. Furthermore, we tested whether M-cadherin might influence (a) the expression of troponin T, a typical marker of biochemical differentiation of skeletal muscle cells, and (b) withdrawal of myoblasts from the cell cycle (called terminal commitment). The studies were performed by using antagonistic peptides which correspond to sequences of the putative M-cadherin binding domain. Analogous peptides of N-cadherin have previously been shown to interfere functionally with the N-cadherin-mediated cell adhesion. In the presence of antagonistic M-cadherin peptides, the fusion of myoblasts into myotubes was inhibited. Analysis of troponin T revealed that it was downregulated at the protein level although its mRNA was still detectable. In addition, withdrawal from the cell cycle typical for terminal commitment of muscle cells was not complete in fusion-blocked myogenic cells. Finally, expression of M-cadherin antisense RNA reducing the expression of the endogenous M-cadherin protein interfered with the fusion process of myoblasts. Our data imply that M-cadherin-mediated myoblast interaction plays an important role in terminal differentiation of skeletal muscle cells.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 114
Author(s):  
Shan Wang ◽  
Xiukai Cao ◽  
Ling Ge ◽  
Yifei Gu ◽  
Xiaoyang Lv ◽  
...  

The growth and development of skeletal muscle require a series of regulatory factors. MiRNA is a non-coding RNA with a length of about 22 nt, which can inhibit the expression of mRNA and plays an important role in the growth and development of muscle cells. The role of miR-22-3p in C2C12 cells and porcine skeletal muscle has been reported, but it has not been verified in Hu sheep skeletal muscle. Through qPCR, CCK-8, EdU and cell cycle studies, we found that overexpression of miR-22-3p inhibited proliferation of skeletal muscle cells (p < 0.01). The results of qPCR and immunofluorescence showed that overexpression of miR-22-3p promoted differentiation of skeletal muscle cells (p < 0.01), while the results of inhibiting the expression of miR-22-3p were the opposite. These results suggested that miR-22-3p functions in growth and development of sheep skeletal muscle cells. Bioinformatic analysis with mirDIP, miRTargets, and RNAhybrid software suggested IGFBP3 was the target of miR-22-3p, which was confirmed by dual-luciferase reporter system assay. IGFBP3 is highly expressed in sheep skeletal muscle cells. Overexpression of IGFBP3 was found to promote proliferation of skeletal muscle cells indicated by qPCR, CCK-8, EdU, and cell cycle studies (p < 0.01). The results of qPCR and immunofluorescence experiments proved that overexpression of IGFBP3 inhibited differentiation of skeletal muscle cells (p < 0.01), while the results of interfering IGFBP3 with siRNA were the opposite. These results indicate that miR-22-3p is involved in proliferation and differentiation of skeletal muscle cells by targeting IGFBP3.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
II Ezeigbo ◽  
C Wheeler-Jones ◽  
S Gibbons ◽  
ME Cleasby

2018 ◽  
Author(s):  
S Höckele ◽  
P Huypens ◽  
C Hoffmann ◽  
T Jeske ◽  
M Hastreiter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document