scholarly journals Cell Cycle Regulation and DNA Damage Response Networks in Diffuse-and Intestinal-Type Gastric Cancer

Author(s):  
Shihori Tanabe ◽  
Sabina Quader ◽  
Ryuichi Ono ◽  
Horacio Cabral ◽  
Kazuhiko Aoyagi ◽  
...  

Epithelial-mesenchymal transition (EMT) networks are essential in acquiring the drug resistance and cancer malignant features in cancer stem cells (CSCs). In this regard, gene expression profiles in diffuse- and intestinal-type gastric cancer (GC) have been analyzed to reveal the network pathways in EMT and CSCs, since the diffuse-type GC has much more mesenchymal features than intestinal-type GC that has the intestinal features. The study results revealed that the activation state of several canonical pathways related to cell cycle regulation was altered. The canonical pathway on Cell cycle: G1/S checkpoint regulation was activated in diffuse-type GC, and canonical pathways on Cell cycle control of chromosomal replication and Cyclins and cell cycle regulation were activated in intestinal-type GC. Canonical pathway related to Role of BRCA1 in DNA damage response was activated in intestinal-type GC, where BRCA1, which is related to G1/S phase transition was up-regulated in intestinal-type GC. Several microRNAs (miRNAs), including mir-10, mir-17, mir-19, mir-194, mir-224, mir-25, mir-34, mir-451, and mir-605, were identified to have direct relationships of RNA-RNA interaction in Cell cycle: G1/S checkpoint regulation pathway. Additionally, cell cycle regulation may be altered in EMT conditions. The alterations in activation states of the pathways related to cell cycle regulation in diffuse- and intestinal-type GC would indicate the significance of cell cycle regulation in EMT.

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5786
Author(s):  
Shihori Tanabe ◽  
Sabina Quader ◽  
Ryuichi Ono ◽  
Horacio Cabral ◽  
Kazuhiko Aoyagi ◽  
...  

Dynamic regulation in molecular networks including cell cycle regulation and DNA damage response play an important role in cancer. To reveal the feature of cancer malignancy, gene expression and network regulation were profiled in diffuse- and intestinal-type gastric cancer (GC). The results of the network analysis with Ingenuity Pathway Analysis (IPA) showed that the activation states of several canonical pathways related to cell cycle regulation were altered. The G1/S checkpoint regulation pathway was activated in diffuse-type GC compared to intestinal-type GC, while canonical pathways of the cell cycle control of chromosomal replication, and the cyclin and cell cycle regulation, were activated in intestinal-type GC compared to diffuse-type GC. A canonical pathway on the role of BRCA1 in the DNA damage response was activated in intestinal-type GC compared to diffuse-type GC, where gene expression of BRCA1, which is related to G1/S phase transition, was upregulated in intestinal-type GC compared to diffuse-type GC. Several microRNAs (miRNAs), such as mir-10, mir-17, mir-19, mir-194, mir-224, mir-25, mir-34, mir-451 and mir-605, were identified to have direct relationships in the G1/S cell cycle checkpoint regulation pathway. Additionally, cell cycle regulation may be altered in epithelial-mesenchymal transition (EMT) conditions. The alterations in the activation states of the pathways related to cell cycle regulation in diffuse- and intestinal-type GC highlighted the significance of cell cycle regulation in EMT.


Cell Reports ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 48-58.e7 ◽  
Author(s):  
Caibin Sheng ◽  
Isabella-Hilda Mendler ◽  
Sara Rieke ◽  
Petra Snyder ◽  
Marcel Jentsch ◽  
...  

2012 ◽  
Vol 104 ◽  
pp. 21
Author(s):  
M.A.T.M. Van Vugt ◽  
M. Krajewska ◽  
H. Sillje ◽  
A.M. Heijink ◽  
Y. Bisselink ◽  
...  

2015 ◽  
Vol 1 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Toshinori Ozaki ◽  
◽  
Youquan Bu ◽  
Hiroki Nagase ◽  

2020 ◽  
Author(s):  
Stefania Marsili ◽  
Ailone Tichon ◽  
Francesca Storici

AbstractRibonuclease H2 (RNase H2) is a key enzyme for the removal of RNA found in DNA-RNA hybrids, playing a fundamental role in biological processes such as DNA replication, telomere maintenance and DNA damage repair. RNase H2 is a trimer composed of three subunits, being RNASEH2A the catalytic subunit. RNASEH2A expression levels have been shown to be upregulated in transformed and cancer cells. In this study we used a bioinformatics approach to identify RNASEH2A co-expressed genes in different human tissues to uncover biological processes in which RNASEH2A is involved. By implementing this approach, we identified functional networks for RNASEH2A that are not only involved in the processes of DNA replication and DNA damage response, but also in cell cycle regulation. Additional examination of protein-protein networks for RNASEH2A by the STRING database analysis, revealed a high co-expression correlation between RNASEH2A and the genes of the protein networks identified. Mass spectrometry analysis of RNASEH2A-bound proteins highlighted players functioning in cell cycle regulation. Further bioinformatics investigation showed increased gene expression of RNASEH2A in different types of actively cycling cells and tissues, and particularly in several cancers, supporting a biological role for RNASEH2A, but not the other two subunits of RNase H2, in cell proliferation.


2016 ◽  
pp. gkw449 ◽  
Author(s):  
José Antonio Pedroza-Garcia ◽  
Séverine Domenichini ◽  
Christelle Mazubert ◽  
Mickael Bourge ◽  
Charles White ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document