canonical pathways
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 142)

H-INDEX

23
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Aditya Mojumdar ◽  
Nancy Adam ◽  
Jennifer A Cobb

A DNA double strand break (DSB) is primarily repaired by one of two canonical pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). NHEJ requires no or minimal end processing for ligation, whereas HR requires 5 end resection followed by a search for homology. The main event that determines the mode of repair is the initiation of 5 resection because if resection starts, then NHEJ cannot occur. Nej1 is a canonical NHEJ factor that functions at the cross-roads of repair pathway choice and prior to its function in stimulating Dnl4 ligase. Nej1 competes with Dna2, inhibiting its recruitment to DSBs and thereby inhibiting resection. The highly conserved C-terminal region (CTR) of Nej1 (330- 338) is important for two events that drive NHEJ, stimulating ligation and inhibiting resection, but it is dispensable for end-bridging. By combining nej1 point mutants with nuclease-dead dna2-1, we find that Nej1-F335 is essential for end-joining whereas V338 promotes NHEJ indirectly through inhibiting Dna2-mediated resection.


2022 ◽  
Vol 23 (2) ◽  
pp. 851
Author(s):  
Santiago Rodriguez Ospina ◽  
Danielle Blazier ◽  
Marangelie Criado-Marrero ◽  
Lauren Gould ◽  
Niat Gebru ◽  
...  

The microtubule-associated protein tau pathologically accumulates and aggregates in Alzheimer’s disease (AD) and other tauopathies, leading to cognitive dysfunction and neuronal loss. Molecular chaperones, like small heat-shock proteins (sHsps), can help deter the accumulation of misfolded proteins, such as tau. Here, we tested the hypothesis that the overexpression of wild-type Hsp22 (wtHsp22) and its phosphomimetic (S24,57D) Hsp22 mutant (mtHsp22) could slow tau accumulation and preserve memory in a murine model of tauopathy, rTg4510. Our results show that Hsp22 protected against deficits in synaptic plasticity and cognition in the tauopathic brain. However, we did not detect a significant change in tau phosphorylation or levels in these mice. This led us to hypothesize that the functional benefit was realized through the restoration of dysfunctional pathways in hippocampi of tau transgenic mice since no significant benefit was measured in non-transgenic mice expressing wtHsp22 or mtHsp22. To identify these pathways, we performed mass spectrometry of tissue lysates from the injection site. Overall, our data reveal that Hsp22 overexpression in neurons promotes synaptic plasticity by regulating canonical pathways and upstream regulators that have been characterized as potential AD markers and synaptogenesis regulators, like EIF4E and NFKBIA.


2022 ◽  
Vol 15 ◽  
Author(s):  
Alice Del Giovane ◽  
Mariagiovanna Russo ◽  
Linda Tirou ◽  
Hélène Faure ◽  
Martial Ruat ◽  
...  

The regeneration of myelin is known to restore axonal conduction velocity after a demyelinating event. Remyelination failure in the central nervous system contributes to the severity and progression of demyelinating diseases such as multiple sclerosis. Remyelination is controlled by many signaling pathways, such as the Sonic hedgehog (Shh) pathway, as shown by the canonical activation of its key effector Smoothened (Smo), which increases the proliferation of oligodendrocyte precursor cells via the upregulation of the transcription factor Gli1. On the other hand, the inhibition of Gli1 was also found to promote the recruitment of a subset of adult neural stem cells and their subsequent differentiation into oligodendrocytes. Since Smo is also able to transduce Shh signals via various non-canonical pathways such as the blockade of Gli1, we addressed the potential of non-canonical Smo signaling to contribute to oligodendroglial cell maturation in myelinating cells using the non-canonical Smo agonist GSA-10, which downregulates Gli1. Using the Oli-neuM cell line, we show that GSA-10 promotes Gli2 upregulation, MBP and MAL/OPALIN expression via Smo/AMP-activated Protein Kinase (AMPK) signaling, and efficiently increases the number of axonal contact/ensheathment for each oligodendroglial cell. Moreover, GSA-10 promotes the recruitment and differentiation of oligodendroglial progenitors into the demyelinated corpus callosum in vivo. Altogether, our data indicate that non-canonical signaling involving Smo/AMPK modulation and Gli1 downregulation promotes oligodendroglia maturation until axon engagement. Thus, GSA-10, by activation of this signaling pathway, represents a novel potential remyelinating agent.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 149
Author(s):  
Nina Sopel ◽  
Alexandra Ohs ◽  
Mario Schiffer ◽  
Janina Müller-Deile

Nephronectin (NPNT) is an extracellular matrix protein in the glomerular basement membrane that is produced by podocytes and is important for the integrity of the glomerular filtration barrier. Upregulated transforming growth factor β (TGF-β) and altered NPNT are seen in different glomerular diseases. TGF-β downregulates NPNT and upregulates NPNT-targeting microRNAs (miRs). However, the pathways involved were previously unknown. By using selective inhibitors of the canonical, SMAD-dependent, and non-canonical TGF-β pathways, we investigated NPNT transcription, translation, secretion, and regulation through miRs in podocytes. TGF-β decreased NPNT mRNA and protein in cultured human podocytes. TGF-β-dependent regulation of NPNT was meditated through intracellular signaling pathways. Under baseline conditions, non-canonical pathways predominantly regulated NPNT post-transcriptionally. Podocyte NPNT secretion, however, was not dependent on canonical or non-canonical TGF-β pathways. The canonical TGF-β pathway was also dispensable for NPNT regulation after TGF-β stimulation, as TGF-β was still able to downregulate NPNT in the presence of SMAD inhibitors. In contrast, in the presence of different non-canonical pathway inhibitors, TGF-β stimulation did not further decrease NPNT expression. Moreover, distinct non-canonical TGF-β pathways mediated TGF-β-induced upregulation of NPNT-targeting miR-378a-3p. Thus, we conclude that post-transcriptional fine-tuning of NPNT expression in podocytes is mediated predominantly through non-canonical TGF-β pathways.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Rosamaria Pennisi ◽  
Maria Musarra-Pizzo ◽  
Tania Velletri ◽  
Antonino Mazzaglia ◽  
Giulia Neri ◽  
...  

In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pingping Yang ◽  
Qinghua Wu ◽  
Lizhe Sun ◽  
Pu Fang ◽  
Lu Liu ◽  
...  

RationaleInflammatory monocyte (MC) subset differentiation is a major feature in tissue inflammatory and atherosclerosis. The underlying molecular mechanism remains unclear.ObjectiveThis study aims to explore molecule targets and signaling which determinate immunological features in MC subsets.Methods and ResultsBlood Ly6Chigh and Ly6Clow MC subsets from control and ApoE-/- mice were isolated by flow cytometry sorting and subjected for bulk high-throughput RNA-sequencing. Intensive bioinformatic studies were performed by analyzing transcriptome through four pairs of comparisons: A) Ly6Chigh vs Ly6Clow in control mice; B) Ly6Chigh vs Ly6Clow in ApoE-/- mice; C) ApoE-/- Ly6Chigh vs control Ly6Chigh MC; D) ApoE-/- Ly6Clow vs control Ly6Clow MC. A total of 80 canonical pathways and 16 enriched pathways were recognized by top-down analysis using IPA and GSEA software, and further used for overlapping analysis. Immunological features and signaling were assessed on four selected functional groups, including MHCII, immune checkpoint, cytokine, and transcription factor (TF). Among the total 14578 significantly differentially expressed (SDE) genes identified though above four comparison, 1051 TF and 348 immunological genes were discovered. SDE immunological genes were matched with corresponding upstream SDE TF by IPA upstream analysis. Fourteen potential transcriptional axes were recognized to modulate immunological features in the Ly6C MC subset. Based on an intensive literature search, we found that the identified SDE immune checkpoint genes in Ly6Chigh MC are associated with pro-inflammatory/atherogenic balance function. Immune checkpoint genes GITR, CTLA4, and CD96 were upregulated in Ly6Clow MC from all mice and presented anti-inflammatory/atherogenic features. Six cytokine genes, including Ccl2, Tnfsf14, Il1rn, Cxcl10, Ccl9, and Cxcl2, were upregulated in Ly6Chigh MC from all mice and associated with pro-inflammatory/atherogenic feature. Cytokine receptor gene Il12rb2, Il1r1, Il27ra, Il5ra, Ngfr, Ccr7, and Cxcr5 were upregulated in Ly6Clow MC from all mice and presented anti-inflammatory/atherogenic features. MHCII genes (H2-Oa, H2-DMb2, H2-Ob, H2-Eb2, H2-Eb1, H2-Aa, and Cd74) were elevated in Ly6Clow MC from all mice. ApoE-/- augmented pro-atherogenic/inflammatory and antigen-presenting cells (APC) feature in both subsets due to elevated expression of cytokine genes (Cxcl11, Cntf, Il24, Xcl, Ccr5, Mpl, and Acvr2a) and MHCII gene (H2-Aa and H2-Ea-ps). Finally, we modeled immunological gene expression changes and functional implications in MC differentiation and adaptive immune response for MC subsets from control and ApoE-/- mice.ConclusionsLy6Chigh MC presented pro-inflammatory/atherogenic features and lower APC potential. Ly6Clow MC displayed anti-inflammatory/atherogenic features and higher APC potential. ApoE-/- confers upon both subsets with augmented pro-atherogenic/inflammatory function and APC potential.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2537
Author(s):  
Mizanur Rahman ◽  
Martin Irmler ◽  
Sandeep Keshavan ◽  
Micol Introna ◽  
Johannes Beckers ◽  
...  

Background: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit. The spike protein is the primary target of neutralizing antibodies generated following infection, and constitutes the viral component of mRNA-based COVID-19 vaccines. Methods: Therefore, in this work we assessed the effect of exposure (24 h) to 10 nM SARS-CoV-2 recombinant S1 protein on physiologically relevant human bronchial (bro) and alveolar (alv) lung mucosa models cultured at air–liquid interface (ALI) (n= 6 per exposure condition). Corresponding sham exposed samples served as a control. The bro-ALI model was developed using primary bronchial epithelial cells and the alv-ALI model using representative type II pneumocytes (NCI-H441). Results: Exposure to S1 protein induced the surface expression of ACE2, toll like receptor (TLR) 2, and TLR4 in both bro-ALI and alv-ALI models. Transcript expression analysis identified 117 (bro-ALI) and 97 (alv-ALI) differentially regulated genes (p ≤ 0.01). Pathway analysis revealed enrichment of canonical pathways such as interferon (IFN) signaling, influenza, coronavirus, and anti-viral response in the bro-ALI. Secreted levels of interleukin (IL) 4 and IL12 were significantly (p < 0.05) increased, whereas IL6 decreased in the bro-ALI. In the case of alv-ALI, enriched terms involving p53, APRIL (a proliferation-inducing ligand) tight junction, integrin kinase, and IL1 signaling were identified. These terms are associated with lung fibrosis. Further, significantly (p < 0.05) increased levels of secreted pro-inflammatory cytokines IFNγ, IL1ꞵ, IL2, IL4, IL6, IL8, IL10, IL13, and tumor necrosis factor alpha were detected in alv-ALI, whereas IL12 was decreased. Altered levels of these cytokines are also associated with lung fibrotic response. Conclusions: In conclusion, we observed a typical anti-viral response in the bronchial model and a pro-fibrotic response in the alveolar model. The bro-ALI and alv-ALI models may serve as an easy and robust platform for assessing the pathogenicity of SARS-CoV-2 variants of concern at different lung regions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Morag Clinton ◽  
Elżbieta Król ◽  
Dagoberto Sepúlveda ◽  
Nikolaj R. Andersen ◽  
Andrew S. Brierley ◽  
...  

The gill of teleost fish is a multifunctional organ involved in many physiological processes, including protection of the mucosal gill surface against pathogens and other environmental antigens by the gill-associated lymphoid tissue (GIALT). Climate change associated phenomena, such as increasing frequency and magnitude of harmful algal blooms (HABs) put extra strain on gill function, contributing to enhanced fish mortality and fish kills. However, the molecular basis of the HAB-induced gill injury remains largely unknown due to the lack of high-throughput transcriptomic studies performed on teleost fish in laboratory conditions. We used juvenile rainbow trout (Oncorhynchus mykiss) to investigate the transcriptomic responses of the gill tissue to two (high and low) sublethal densities of the toxin-producing alga Prymnesium parvum, in relation to non-exposed control fish. The exposure time to P. parvum (4–5 h) was sufficient to identify three different phenotypic responses among the exposed fish, enabling us to focus on the common gill transcriptomic responses to P. parvum that were independent of dose and phenotype. The inspection of common differentially expressed genes (DEGs), canonical pathways, upstream regulators and downstream effects pointed towards P. parvum-induced inflammatory response and gill inflammation driven by alterations of Acute Phase Response Signalling, IL-6 Signalling, IL-10 Signalling, Role of PKR in Interferon Induction and Antiviral Response, IL-8 Signalling and IL-17 Signalling pathways. While we could not determine if the inferred gill inflammation was progressing or resolving, our study clearly suggests that P. parvum blooms may contribute to the serious gill disorders in fish. By providing insights into the gill transcriptomic responses to toxin-producing P. parvum in teleost fish, our research opens new avenues for investigating how to monitor and mitigate toxicity of HABs before they become lethal.


2021 ◽  
Author(s):  
Caroline Caetano Silva ◽  
Thomas Edouard ◽  
Melanie Fradin ◽  
Marion Aubert-Mucca ◽  
Manon Ricquebourg ◽  
...  

Abstract Monogenic early-onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in WNT11 (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G &gt; A p.Ala73Thr) and (NM_004626.2:c.865G &gt; A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor LGR5, was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but WNT3A recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2–LGR5 complex via the non-canonical Wnt pathway.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Heshuang Qu ◽  
Erik Sundberg ◽  
Cecilia Aulin ◽  
Manoj Neog ◽  
Karin Palmblad ◽  
...  

Abstract Background This study aimed to perform an immunoprofiling of systemic juvenile idiopathic arthritis (sJIA) in order to define biomarkers of clinical use as well as reveal new immune mechanisms. Methods Immunoprofiling of plasma samples from a clinically well-described cohort consisting of 21 sJIA patients as well as 60 age and sex matched healthy controls, was performed by a highly sensitive proteomic immunoassay. Based on the biomarkers being significantly up- or down-regulated in cross-sectional and paired analysis, related canonical pathways and cellular functions were explored by Ingenuity Pathway Analysis (IPA). Results The well-studied sJIA biomarkers, IL6, IL18 and S100A12, were confirmed to be increased during active sJIA as compared to healthy controls. IL18 was the only factor found to be increased during inactive sJIA as compared to healthy controls. Novel factors, including CASP8, CCL23, CD6, CXCL1, CXCL11, CXCL5, EIF4EBP1, KITLG, MMP1, OSM, SIRT2, SULT1A1 and TNFSF11, were found to be differentially expressed in active and/or inactive sJIA and healthy controls. No significant pathway activation could be predicted based on the limited factor input to the IPA. High Mobility Group Box 1 (HMGB1), a damage associated molecular pattern being involved in a series of inflammatory diseases, was determined to be higher in active sJIA than inactive sJIA. Conclusions We could identify a novel set of biomarkers distinguishing active sJIA from inactive sJIA or healthy controls. Our findings enable a better understanding of the immune mechanisms active in sJIA and aid the development of future diagnostic and therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document