scholarly journals Comparative Residual Stress Evaluation in SLM 3D-printed Al-Si-Mg alloy (RS-300) Using the Contour Method, Hole Drilling Laser Speckle Interferometry, X-ray Diffraction and Xe pFIB-DIC Micro-ring-core Milling

Author(s):  
Eugene S. Statnik ◽  
Fatih Uzun ◽  
Svetlana A. Lipovskikh ◽  
Sviatoslav I. Eleonsky ◽  
Vladimir S. Pisarev ◽  
...  

SLM Additive Manufacturing has demonstrated great potential for aerospace applications when structural elements of individual design and/or complex shape need to be promptly supplied. 3D-printable AlSi10Mg (RS-300) alloy is widely used for the fabrication of different structures in aerospace industry. The importance of the evaluation of residual stresses that arise as a result of complex 3D-printing process thermal history is widely discussed in literature, but systematic assessment remains lacking for their magnitude, spatial distribution, and comparative analysis of different evaluation techniques. In this study we report the results of a systematic study of residual stresses in a 3D-printed double tower shaped samples using several approaches: the contour method, blind hole drilling laser speckle interferometry, X-ray diffraction, and Xe pFIB-DIC micro-ring-core milling analysis. We show that a high level of tensile and compressive residual stresses is inherited from SLM 3D-printing and retained for longer than 6 months. The stresses vary over a significant proportion of the material yield stress. All residual stress evaluation techniques considered returned comparable values of residual stresses even regardless of dramatically different dimensional scales from millimeters for the Contour Method down, laser speckle interferometry and XRD and down to small fractions of a mm (70 μm) for Xe pFIB-DIC ring-core drilling. The use of residual stress evaluation is discussed in the context of optimizing the printing strategy to enhance the mechanical performance and long-term durability.

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2064
Author(s):  
Eugene S. Statnik ◽  
Fatih Uzun ◽  
Svetlana A. Lipovskikh ◽  
Yuliya V. Kan ◽  
Sviatoslav I. Eleonsky ◽  
...  

SLM additive manufacturing has demonstrated great potential for aerospace applications when structural elements of individual design and/or complex shape need to be promptly supplied. 3D-printable AlSi10Mg (RS-300) alloy is widely used for the fabrication of different structures in the aerospace industry. The importance of the evaluation of residual stresses that arise as a result of the 3D-printing process’ complex thermal history is widely discussed in literature, but systematic assessment remains lacking for their magnitude, spatial distribution, and comparative analysis of different evaluation techniques. In this study, we report the results of a systematic study of residual stresses in 3D-printed double tower shaped samples using several approaches: the contour method, blind hole drilling laser speckle interferometry, X-ray diffraction, and Xe pFIB-DIC micro-ring-core milling analysis. We show that a high level of tensile and compressive residual stresses is inherited from SLM 3D-printing and retained for longer than 6 months. The stresses vary (from −80 to +180 MPa) over a significant proportion of the material yield stress (from −⅓ to ¾). All residual stress evaluation techniques considered returned comparable values of residual stresses, regardless of dramatically different dimensional scales, which ranged from millimeters for the contour method, laser speckle interferometry, and XRD down to small fractions of a mm (70 μm) for Xe pFIB-DIC ring-core drilling. The use of residual stress evaluation is discussed in the context of optimizing printing strategies to enhance mechanical performance and long-term durability.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


2013 ◽  
Vol 768-769 ◽  
pp. 174-181 ◽  
Author(s):  
David von Mirbach

Two commonly used mechanical methods for the determination of residual stresses are the hole-drilling method and the ring-core method, which can be regarded as semi-destructive. The most restricting limitation for the general applicability of both methods, according to the current state of science and technology, is the fact that the scope for relatively low residual stress under 60% of the yield stress is limited.This is a result of the notch effect of the hole or ring core, which leads to a plastification around and on the bottom of the hole and ring shaped groove already at stresses well below the yield stress of the material. The elastic evaluation of the resulting plastic strains leads consequently to an overestimation of the delineated residual stresses. In this paper the influence of elastic-plastic material properties no the specific calibration function for the hole-drilling method using the differential method is studied, and the method of adaptive calibration functions is presented.


2016 ◽  
Vol 827 ◽  
pp. 117-120
Author(s):  
Jaroslav Vaclavik ◽  
Stanislav Holy ◽  
Jiří Jankovec ◽  
Petr Jaros ◽  
Otakar Weinberg

The method for residual stress measurement using through the hole drilling and investigation of the residual stresses relief with the help of incremental layers removing is presented. Drilling the rosette-hole from the opposite side – the inverse layers removing – have to be used for evaluation of residual stress near the back side of the object wall in cases when this surface is inaccessible for any hole-drilling instrument. The strain gauge rosette is installed on the opposite side of the drilled wall and a new mechanical task of incremental layers removal must be solved. The calibration constants for residual stress evaluation of HBM RY21 type rosette for this case were derived using numerical modeling by FEA and its experimental verification.


Author(s):  
Christopher M. Gill ◽  
Philip J. Withers ◽  
Alex Evans ◽  
Neil Fox ◽  
Koichi Akita

A layer of compressive residual stress extending from the surface of a component can help to extend fatigue life, but it must remain stable during applied service loading. Metal shot and glass bead peening are traditionally used; introducing a shallow (100–300μm) layer of compressive residual stress and a highly cold worked surface. Laser peening and deep rolling are capable of introducing much deeper compressive residual stresses combined with lower levels of cold work. In this paper we report on the level of shakedown of residual stress brought about by constant strain amplitude fatigue. Glass and metal shot peened, laser peened and deep rolled Ti-6Al-4V samples have been studied. The residual stress profiles as a function of depth have been measured using neutron diffraction, laboratory x-ray diffraction and a hybrid hole-drilling/laboratory x-ray diffraction method. The magnitude and depth of cold work determined for each of the treatment methods. The extent of subsequent residual stress shakedown under different strain amplitudes and load ratios, in deep rolled, glass bead and metal shot peened samples is also assessed.


2016 ◽  
Vol 19 (5) ◽  
pp. 1176-1179 ◽  
Author(s):  
Rodrigo Braga Ceglias ◽  
Juciane Maria Alves ◽  
Ramón Alves Botelho ◽  
Eustáquio de Souza Baeta Júnior ◽  
Igor Cuzzuol dos Santos ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 566
Author(s):  
Bernd-Arno Behrens ◽  
Jens Gibmeier ◽  
Kai Brunotte ◽  
Hendrik Wester ◽  
Nicola Simon ◽  
...  

Residual stresses resulting from hot-forming processes represent an important aspect of a component’s performance and service life. Considering the whole process chain of hot forming, the integrated heat treatment provided by a defined temperature profile during cooling offers a great potential for the targeted adjustment of the desired residual stress state. Finite element (FE) simulation is a powerful tool for virtual process design aimed at generating a beneficial residual stress profile. The validation of these FE models is typically carried out on the basis of individual surface points, as these are accessible through methods like X-ray diffraction, hole-drilling, or the nanoindentation method. However, especially in bulk forming components, it is important to evaluate the quality of the model based on residual stress data from the volume. For these reasons, in this paper, an FE model which was already validated by near surface X-ray diffraction analyses was used to explain the development of residual stresses in a reference hot forming process for different cooling scenarios. Subsequently, the reference process scenarios were experimentally performed, and the resulting residual stress distributions in the cross-section of the bulk specimens were determined by means of the contour method. These data were used to further validate the numerical simulation of the hot forming process, wherein a good agreement between the contour method and process simulation was observed.


Sign in / Sign up

Export Citation Format

Share Document