scholarly journals On the Minimum Polynomial and Applications

Author(s):  
Nikos Halidias

In this note we study the computation of the minimum polynomial of a matrix $A$ and how we can use it for the computation of the matrix $A^n$. We also describe the form of the elements of the matrix $A^{-n}$ and we will see that it is closely related with the computation of the Drazin generalized inverse of $A$. Next we study the computation of the exponential matrix and finally we give a simple proof of the Leverrier - Faddeev algorithm for the computation of the characteristic polynomial.

Author(s):  
M. D. Gould

AbstractWe present a new derivation of the polynomial identities satisfied by certain matrices A with entries Aij (i, j = 1,…, n) from the universal enveloping algebra of a semi-simple Lie algebra. These polynomial identities are exhibited in a representation-independent way as p(A) = 0 where p(x) (herein called the characteristic polynomial of A) is a polynomial with coefficients from the centre Z of the universal enveloping algebra. The minimum polynomial identity m(A) = 0 of the matrix A over Z is also obtained and it is shown that p(x) and m(x) possess properties analogous to the characteristic and minimum polynomials respectively of a matrix with numerical entries. Acting on a representation (finite or infinite dimensional) admitting an infinitesimal character these polynomial identities may be expressed in a useful factored form. Our results include the characteristic identities of Bracken and Green [1] as a special case and show that these latter identities hold also in infinite dimensional representations.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


1984 ◽  
Vol 106 (2) ◽  
pp. 239-249 ◽  
Author(s):  
E. J. Gunter ◽  
R. R. Humphris ◽  
H. Springer

The calculation of the damped eigenvalues of a large multistation gas turbine by the complex matrix transfer procedure may encounter numerical difficulties, even on a large computer due to numerical round-off errors. In this paper, a procedure is presented in which the damped eigenvalues may be rapidly and accurately calculated on a minicomputer with accuracy which rivals that of a mainframe computer using the matrix transfer method. The method presented in this paper is based upon the use of constrained normal modes plus the rigid body modes in order to generate the characteristic polynomial of the system. The constrained undamped modes, using the matrix transfer process with scaling, may be very accurately calculated for a multistation turbine on a minicomputer. In this paper, a five station rotor is evaluated to demonstrate the procedure. A method is presented in which the characteristic polynomial may be automatically generated by Leverrier’s algorithm. The characteristic polynomial may be directly solved or the coefficients of the polynomial may be examined by the Routh criteria to determine stability. The method is accurate and easy to implement on a 16 bit minicomputer.


1972 ◽  
Vol 13 (4) ◽  
pp. 417-422 ◽  
Author(s):  
A. M. Kshirsagar ◽  
Y. P. Gupta

AbstractThe Laplace-Stieltjes Transform m(s) of the matrix renewal function M(t) of a Markov Renewal process is expanded in powers of the argument s, in this paper, by using a generalized inverse of the matrix I–P0, where P0 is the transition probability matrix of the imbedded Markov chain. This helps in obtaining the values of moments of any order of the number of renewals and also of the moments of the first passage times, for large values of t, the time. All the results of renewal theory are hidden under the Laplacian curtain and this expansion helps to lift this curtain at least for large values of t and is thus useful in predicting the number of renewals.


Author(s):  
M. H. Pearl

The notion of the inverse of a matrix with entries from the real or complex fields was generalized by Moore (6, 7) in 1920 to include all rectangular (finite dimensional) matrices. In 1951, Bjerhammar (2, 3) rediscovered the generalized inverse for rectangular matrices of maximal rank. In 1955, Penrose (8, 9) independently rediscovered the generalized inverse for arbitrary real or complex rectangular matrices. Recently, Arghiriade (1) has given a set of necessary and sufficient conditions that a matrix commute with its generalized inverse. These conditions involve the existence of certain submatrices and can be expressed using the notion of EPr matrices introduced in 1950 by Schwerdtfeger (10). The main purpose of this paper is to prove the following theorem:Theorem 2. A necessary and sufficient condition that the generalized inverse of the matrix A (denoted by A+) commute with A is that A+ can be expressed as a polynomial in A with scalar coefficients.


Author(s):  
Keisuke Arikawa

Abstract We discuss the symbolic computation of inverse kinematics for serial 6R manipulators with arbitrary geometries (general 6R manipulators) based on Raghavan and Roth’s solution. The elements of the matrices required in the solution were symbolically calculated. In the symbolic computation, an algorithm for simplifying polynomials upon considering the symbolic constraints (constraints of the trigonometric functions and those of the rotation matrix), a method for symbolic elimination of the joint variables, and an efficient computation of the rational polynomials are presented. The elements of the matrix whose determinant produces a 16th-order single variable polynomial (characteristic polynomial) were symbolically calculated by using structural parameters (parameters that define the geometry of the manipulator) and hand configuration parameters (parameters that define the hand configuration). The symbolic determinant of the matrix consists of huge number of terms even when each element is replaced by a single symbol. Instead of expressing the coefficients in a characteristic polynomial by structural parameters and hand configuration parameters, we substituted appropriate rational numbers that strictly satisfy the constraints of the symbols for the elements of the matrix and calculated the determinant (numerical error free calculation). By numerically calculating the real roots of the rational characteristic polynomial and the joint angles for each root, we verified the formulation for the symbolic computation.


2019 ◽  
Vol 27 (3) ◽  
pp. 167-175
Author(s):  
Vyacheslav L. Girko

Abstract The lower bounds for the minimal singular eigenvalue of the matrix whose entries have zero means and bounded variances are obtained. The new method is based on the G-method of perpendiculars and the RESPECT method.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Harishchandra S. Ramane ◽  
Shaila B. Gudimani ◽  
Sumedha S. Shinde

The signless Laplacian polynomial of a graph G is the characteristic polynomial of the matrix Q(G)=D(G)+A(G), where D(G) is the diagonal degree matrix and A(G) is the adjacency matrix of G. In this paper we express the signless Laplacian polynomial in terms of the characteristic polynomial of the induced subgraphs, and, for regular graph, the signless Laplacian polynomial is expressed in terms of the derivatives of the characteristic polynomial. Using this we obtain the characteristic polynomial of line graph and subdivision graph in terms of the characteristic polynomial of induced subgraphs.


Sign in / Sign up

Export Citation Format

Share Document