scholarly journals Towards a Physically Consistent Phase-Field Model for Alloy Solidification

Author(s):  
Peter Bollada ◽  
Peter K Jimack ◽  
Andrew M Mullis

We summarise contributions made to the computational phase-field modelling of alloy solidification from the University of Leeds spoke of the LiME project. We begin with a general introduction to phase-field, and then reference the numerical issues that arise from solution of the model, before detailing each contribution to the modelling itself. These latter contributions range from controlling and developing interface-width independent modelling; controlling morphology in both single and multiphase settings; generalising from single to multi-phase models; and creating a thermodynamic consistent framework for modelling entropy flow and thereby postulate a temperature field consistent with the concepts of, and applicable in, multiphase and density-dependent settings.

2009 ◽  
Vol 58 (1) ◽  
pp. 650
Author(s):  
Yang Yu-Juan ◽  
Wang Jin-Cheng ◽  
Zhang Yu-Xiang ◽  
Zhu Yao-Chan ◽  
Yang Gen-Cang

2016 ◽  
Vol 704 ◽  
pp. 241-250 ◽  
Author(s):  
Peter Holfelder ◽  
Jin Ming Lu ◽  
Christian Krempaszky ◽  
Ewald A. Werner

A Multi Phase Field model is proposed to describe the microstructure evolution induced by laser-material interaction in Selective Laser Melting (SLM). On the basis of the free enthalpy, the nucleation and growth processes occurring during the relevant phase transformations are explicitly taken into account. Within this contribution, the focus is laid on the SLM processing of the titanium alloy Ti-6Al-4V with special emphasis on the transition between β-titanium and melt. The results are discussed and compared to those of more conventional modelling approaches.


Sign in / Sign up

Export Citation Format

Share Document