material interaction
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 60)

H-INDEX

29
(FIVE YEARS 4)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Helena Herrada-Manchón ◽  
David Rodríguez-González ◽  
Manuel Alejandro Fernández ◽  
Nathan William Kucko ◽  
Florence Barrère-de Groot ◽  
...  

The production of patient-specific bone substitutes with an exact fit through 3D printing is emerging as an alternative to autologous bone grafting. To the success of tissue regeneration, the material characteristics such as porosity, stiffness, and surface topography have a strong influence on the cell–material interaction and require significant attention. Printing a soft hydrocolloid-based hydrogel reinforced with irregularly-shaped microporous biphasic calcium phosphate (BCP) particles (150–500 µm) is an alternative strategy for the acquisition of a complex network with good mechanical properties that could fulfill the needs of cell proliferation and regeneration. Three well-known hydrocolloids (sodium alginate, xanthan gum, and gelatin) have been combined with BCP particles to generate stable, homogenous, and printable solid dispersions. Through rheological assessment, it was determined that the crosslinking time, printing process parameters (infill density percentage and infill pattern), as well as BCP particle size and concentration all influence the stiffness of the printed matrices. Additionally, the swelling behavior on fresh and dehydrated 3D-printed structures was investigated, where it was observed that the BCP particle characteristics influenced the constructs’ water absorption, particle diffusion out of the matrix and degradability.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2023
Author(s):  
Asif Ur Rehman ◽  
Muhammad Arif Mahmood ◽  
Peyman Ansari ◽  
Fatih Pitir ◽  
Metin Uymaz Salamci ◽  
...  

Powder spattering and splashing in the melt pool are common phenomena during Laser-based Powder Bed Fusion (LPBF) of metallic materials having high fluidity. For this purpose, analytical and computational fluid dynamics (CFD) models have been deduced for the LPBF of AlSi10Mg alloy. The single printed layer’s dimensions were estimated using primary operating conditions for the analytical model. In CFD modelling, the volume of fluid and discrete element modelling techniques were applied to illustrate the splashing and spatter phenomena, providing a novel hydrodynamics CFD model for LPBF of AlSi10Mg alloy. The computational results were compared with the experimental analyses. A trial-and-error method was used to propose an optimized set of parameters for the LPBF of AlSi10Mg alloy. Laser scanning speed, laser spot diameter and laser power were changed. On the other hand, the powder layer thickness and hatch distance were kept constant. Following on, 20 samples were fabricated using the LPBF process. The printed samples’ microstructures were used to select optimized parameters for achieving defect-free parts. It was found that the recoil pressure, vaporization, high-speed vapor cloud, Marangoni flow, hydraulic pressure and buoyancy are all controlled by the laser-material interaction time. As the laser-AlSi10Mg material interaction period progresses, the forces presented above become dominant. Splashing occurs due to a combination of increased recoil pressure, laser-material interaction time, higher material’s fluidity, vaporization, dominancy of Marangoni flow, high-speed vapor cloud, hydraulic pressure, buoyancy, and transformation of keyhole from J-shape to reverse triangle-shape that is a tongue-like protrusion in the keyhole. In the LPBF of AlSi10Mg alloy, only the conduction mode melt flow has been determined. For multi-layers printing of AlSi10Mg alloy, the optimum operating conditions are laser power = 140 W, laser spot diameter = 180 µm, laser scanning speed = 0.6 m/s, powder layer thickness = 50 µm and hatch distance = 112 µm. These conditions have been identified using sample microstructures.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3140
Author(s):  
Maria A. Rodriguez-Soto ◽  
Natalia Suarez Vargas ◽  
Alejandra Riveros ◽  
Carolina Muñoz Camargo ◽  
Juan C. Cruz ◽  
...  

Vascular grafts (VG) are medical devices intended to replace the function of a diseased vessel. Current approaches use non-biodegradable materials that struggle to maintain patency under complex hemodynamic conditions. Even with the current advances in tissue engineering and regenerative medicine with the tissue engineered vascular grafts (TEVGs), the cellular response is not yet close to mimicking the biological function of native vessels, and the understanding of the interactions between cells from the blood and the vascular wall with the material in operative conditions is much needed. These interactions change over time after the implantation of the graft. Here we aim to analyze the current knowledge in bio-molecular interactions between blood components, cells and materials that lead either to an early failure or to the stabilization of the vascular graft before the wall regeneration begins.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3041
Author(s):  
Teun van Woerkom ◽  
Rens van Beek ◽  
Hans Middelkoop ◽  
Marc F. P. Bierkens

With up to 15% of the world’s population being protected by dikes from flooding, climate-change-induced river levels may dramatically increase the flood risk of these societies. Reliable assessments of dike stability will become increasingly important, but groundwater flow through dikes is often oversimplified due to limited understanding of the important process parameters. To improve the understanding of these parameters, we performed a global sensitivity analysis on a comprehensive hydro-stability model. The sensitivity analysis encompassed fifteen parameters related to geometry, drainage conditions and material properties. The following three sensitivity settings were selected to characterize model behavior: parameter prioritization, trend identification and interaction qualification. The first two showed that dike stability is mostly dependent on the dike slope, followed by the type of subsurface material. Interaction quantification indicated a very prominent interaction between the dike and subsurface material, as it influences both groundwater conditions and dike stability directly. Despite our relatively simple model setup, a database containing the results of the extensive Monte Carlo analysis succeeded in finding most of the unsafe sections identified by the official inspection results. This supports the applicability of our results and demonstrates that both geometry and subsurface parameters affect the groundwater conditions and dike stability.


2021 ◽  
Author(s):  
Daniel Paardekooper ◽  
Chad Holbrook ◽  
Amir L. L. A. Vosteen ◽  
Denise Meuken ◽  
Wouter Halswijk ◽  
...  

2021 ◽  
Author(s):  
Tae Hong Im ◽  
Jae Hee Lee ◽  
Hee Seung Wang ◽  
Sang Hyun Sung ◽  
Young Bin Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document