scholarly journals Corrosion Behavior of Low-Carbon Steel and Weathering Steel in a Coastal Zone of the Spratly Islands: A Tropical Marine Atmosphere

Author(s):  
Yuwei Liu ◽  
2020 ◽  
Vol 1012 ◽  
pp. 401-406
Author(s):  
Carlos Trivellato de Carvalho Filho ◽  
Pedro Paiva Brito

In the present work, the friction surfacing process was applied to manufacture aluminum alloy (AA6351) coatings on low carbon steel (AISI 1020) substrates. After friction surfacing the AA6351 deposited coatings were submitted to two finishing process in order to adjust surface roughness: milling and milling followed by sanding. The corrosion behavior of the two finishing process was compared with the as-deposited condition in order to determine the influence of surface roughness on the corrosion resistance of friction surfacing coatings. The corrosion behavior was examined by electrochemical impedance spectroscopy and potentiodynamic polarization in a 3.5wt.%NaCl solution containing naturally dissolved O2. The results obtained indicated that the elevated surface roughness observed in the as-deposited condition led to relatively lower corrosion resistance in comparison, with lower values for polarization resistance and more anodic corrosion potential.


2002 ◽  
Vol 42 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Junichi Tanaka ◽  
Keisuke Ono ◽  
Shigenari Hayashi ◽  
Kenichi Ohsasa ◽  
Toshio Narita

Author(s):  
Huaixiang Cao ◽  
Hao Zhang ◽  
Xingqi Qiu

Low-carbon steel Q235B was widely used in low or middle pressure equipments, which were not only withstanding the corrosive effect of the environment or medium, but also the high stress in service processes. In this paper, acetic acid accelerated corrosion test of low-carbon steel Q235B under the action of various stress levels was conducted, and its pitting corrosion behavior was studied by corrosion morphology, pitting corrosion parameters, scanning electron microscope (SEM) and energy disperse spectroscopy (EDS). The results showed that, the degree of pitting corrosion of low carbon steel Q235B with stress was more serious than that of non-stress. And the corrosion started from grain boundary, which was corroded before grain itself, and then grains fell off or dissolved. Furthermore, it would have the tendency of deep hole corrosion with stress, which was more of a threat to the structural safety of pressure vessels.


Sign in / Sign up

Export Citation Format

Share Document